Skip to main content
Log in

Penetration mechanism of grouting by using the cement-based slurry with time-dependent viscosity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The fracture grouting method can play a very good anti-seepage and reinforcement effect for some rock layer that are not compacted or have hidden dangers such as leakage channels, soft layers, cracks, and so on. However, the mechanism of action requires further in-depth study. In this study, to investigate the penetration of time-dependent viscosity of the slurry in the surrounding rock, cement-based slurry was used as the object of research to carry out the time-dependent viscosity tests, analyze its rheological characteristics, and determine its time-dependent viscosity. Based on the Bingham model of slurry, a grout diffusion model was established, considering into consideration slurry time-dependent viscosity and the rock type I fracture toughness. In addition, this study considered the impact of rock aperture deformation on the grout process, established a grout penetration equation, and explored the influencing factors of the slurry penetration range. The process of grouting’s strengthening of the fractured rock mass is addressed from both macroscopic and microscopic perspectives, and the correctness of the grouting penetration formula is confirmed by comparing in-situ grouting borehole endoscopic pictures in the coal mine tunnel. This study demonstrates that the grouting penetration radius increases very slowly after the grouting pressure reaches a certain level, but it is easier for the slurry to combine with the coal rock body to form a tightly consolidated body under high pressure. Therefore, the grouting pressure should be designed based on the rock media type and engineering disturbance. The results of this study could give a theoretical foundation for the selection and design of parameters required for grouting engineering practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

The [DATA TYPE] data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Bao, H., Wu, F.Q., Xi, P.C.: Estimation of rock fracture toughness of type I and analysis of its influencing factors. J. China Coal Soc. 42(03), 604–612 (2017). https://doi.org/10.13225/j.cnki.jccs.2016.0228. (in Chinese)

    Article  Google Scholar 

  2. Chen, S.J., Yin, D.W., Cao, F.W., Liu, Y., Ren, K.Q.: An overview of integrated surface subsidence-reducing technology in mining areas of china. Nat. Hazards 81(2), 1129–1145 (2016). https://doi.org/10.1007/s11069-015-2123-x

    Article  Google Scholar 

  3. Chen, Y., Nishiyama, T., Terada, M., Iwamoto, Y.: A fluorescent approach to the identification of grout injected into fissures and pore spaces. Eng. Geol. 56, 395–401 (2000). https://doi.org/10.1016/S0013-7952(99)00100-3

    Article  Google Scholar 

  4. Corson, L., Reid, C., Lunn, R.J., Mountassir, G.E., Henderson, A.E., Henderson, K., Pagano, A.G., Kremer, Y.: Field validation of a detectable, magnetic, cementitious grout for rock fracture grouting. Int. J. Rock Mech. Min. Sci. 145, 104853 (2021). https://doi.org/10.1016/j.ijrmms.2021.104853

    Article  Google Scholar 

  5. Draganović, A., Stille, H.: Filtration and penetrability of cement-based grout: study performed with a short slot. Tunnel. Undergr. Space Technol. 26(4), 548–559 (2011). https://doi.org/10.1016/j.tust.2011.02.007

    Article  Google Scholar 

  6. Eldert, J.V., Funehag, J., Schunnesson, H., Saiang, D.: Drill monitoring for rock mass grouting: case study at the stockholm bypass. Rock Mech. Rock Eng. 54(2), 501–511 (2021). https://doi.org/10.1007/s00603-020-02279-w

    Article  ADS  Google Scholar 

  7. Ewert, F.K.: Rock Grouting. Springer, Berlin (1985)

    Book  Google Scholar 

  8. Gustafson, G., Claesson, J., Fransson, Å.: Steering parameters for rock grouting. J. Appl. Math. 1, 1–9 (2013). https://doi.org/10.1155/2013/269594

    Article  Google Scholar 

  9. Hao, M.M., Wang, F.M., Li, X.L., Zhang, B., Zhong, Y.H.: Numerical and experimental studies of diffusion law of grouting with expansible polymer. J. Mater. Civ. Eng. 30(2), 04017290 (2018)

    Article  Google Scholar 

  10. Hao, Y.J., Gao, C.C., Shi, M.S., Wang, F.M., Xia, Y.Y., Wang, C.J.: Application of polymer split grouting technology in earthen dam: diffusion law and applicability. Constr. Build. Mater. 369, 130612 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130612

    Article  CAS  Google Scholar 

  11. Henderson, A.E., Robertson, I.A., Whitfield, J.M., Garrard, G.F.G., Swannell, N.G., Fisch, H.: A new method for real-time monitoring of grout spread through fractured rocks. MRS Proc. (2008). https://doi.org/10.1557/PROC-1107-577

    Article  Google Scholar 

  12. Houlsby, A.C.: Construction and Design of Cement Grouting: A Guide to Grouting in Rock Foundations. Wiley, Chichester (1990)

    Google Scholar 

  13. Jia, X.L.: Study on the Preparation and Properties of Performance Cementitious Grout. Wuhan University of Technology, Wuhan (2011). ((in Chinese))

    Google Scholar 

  14. Kang, H.P.: Seventy years development and prospects of strata control technology for coal mine roadways in China. Chin. J. Rock Mech. Eng. 40(01), 1–30 (2021). https://doi.org/10.13722/j.cnki.jrme.2020.0072. (in Chinese)

    Article  CAS  Google Scholar 

  15. Kang, Y., Wei, X.S., Tian, K.: Research on the influence of natrium gluconate on the setting and hardening of cement pastes. J. Wuhan Univ. Technol. 06, 39–41 (2009). https://doi.org/10.3963/j.issn.1671-4431.2009.06.011. (in Chinese)

    Article  Google Scholar 

  16. Kudryashova, O.S., Elokhov, A.M., Khayrulina, E.A., Bogush, A.A.: Composition for rock grouting based on insoluble calcium salts for groundwater protection. Environ. Earth Sci. 80(5), 1–8 (2021). https://doi.org/10.1007/s12665-021-09502-z

    Article  CAS  Google Scholar 

  17. Kutzner, C.: Grouting of Rock and Soil. Crc Press, Boca Raton (1996)

    Google Scholar 

  18. Liu, J., Zhang, J.S., Han, Y., Wu, X.: Backfilled grouting diffusion law and model of pressure on segments of shield tunnel considering viscosity variation of cement grout. Geotech. Mech. 36(02), 361–368 (2015). https://doi.org/10.16285/j.rsm.2017.02.018. (in Chinese)

    Article  Google Scholar 

  19. Liu, Q.S., Lei, G.F., Peng, X.X., Lu, C.B., Wei, L.: Rheological characteristics of cement grout and its effect on mechanical properties of a rock fracture. Rock Mech. Rock Eng. 51(2), 613–625 (2018). https://doi.org/10.1007/s00603-017-1340-x

    Article  ADS  Google Scholar 

  20. Liu, Q.S., Lu, C.B., Lu, H.F., Liu, X.W.: Application and analysis of ground surface pre-grouting strengthening deep fault fracture zone. J. Rock Mech. Eng. S2, 3688–3695 (2013). https://doi.org/10.3969/j.issn.1000-6915.2013.z2.088. (in Chinese)

    Article  Google Scholar 

  21. Lu, H.F., Zhang, Q.Z.: Investigations on shear properties of soft rock joints under grouting. Rock Mech. Rock Eng. 54(4), 1875–1883 (2021). https://doi.org/10.1007/s00603-021-02366-6

    Article  ADS  Google Scholar 

  22. Majer, E.L.: The application of high frequency seismic monitoring methods for the mapping of grout injections. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 26, 249–256 (1989). https://doi.org/10.1016/0148-9062(89)91974-8

    Article  Google Scholar 

  23. Öge, İF.: Prediction of cementitious grout take for a mine shaft permeation by adaptive neuro-fuzzy inference system and multiple regression. Eng. Geol. 228, 238–248 (2017). https://doi.org/10.1016/j.enggeo.2017.08.013

    Article  Google Scholar 

  24. Qian, H., Fang, Y., Li, Z., Zhou, Y.H., Cao, J.: Influence of monomer grinding aids on properties of portland cement. China Powder Technol. 20(003), 48–51 (2014). https://doi.org/10.13732/j.issn.1008-5548.2014.03.011. (in Chinese)

    Article  CAS  Google Scholar 

  25. Rahman, M., Wiklund, J., Reinhardt, K., Hkansson, U.: Yield stress of cement grouts. Tunnel. Undergr. Space Technol. 61, 50–60 (2017). https://doi.org/10.1016/j.tust.2016.09.009

    Article  Google Scholar 

  26. Senkaya, A., Toka, E.B., Olgun, M.: Effects of cement grout characteristics on formation and strength of jet grouting columns. Arab. J. Sci. Eng. 47, 13035–13047 (2022). https://doi.org/10.1007/s13369-022-06678-9

    Article  CAS  Google Scholar 

  27. Strømsvik, H., Gammelsæter, B.: Investigation and assessment of pre-grouted rock mass. Bull. Eng. Geol. Environ. 79(5), 2543–2560 (2020). https://doi.org/10.1007/s10064-019-01722-9

    Article  CAS  Google Scholar 

  28. Wang, Q., Qin, Q., Jiang, B., Yu, H.C., Pan, R., Li, S.C.: Study and engineering application on the bolt-grouting reinforcement effect in underground engineering with fractured surrounding rock. Tunnel. Undergr. Space Technol. 84, 237–247 (2019a). https://doi.org/10.1016/j.tust.2018.11.028

    Article  Google Scholar 

  29. Wang, X.C., Liu, R.T., Yang, W.M., Zhang, L.Z., Guo, Y.X., Xin, D.D., Bo, C.J.: Study on grouting mechanism of horizontal fractures considering the bleeding of cement slurry. Chin. J. Rock Mech. Eng. 38(5), 1005–1017 (2019b). https://doi.org/10.13722/j.cnki.jrme.2018.1062. (in Chinese)

    Article  Google Scholar 

  30. Wang, Y.L.: Research on Mechanical Deformation Characteristics of Fractured Rock Mass and the Effect of Grouting Reinforcement. Chongqing University, Chongqing (2019). (in Chinese)

    Google Scholar 

  31. Xu, Z.P., Liu, C.W., Zhou, X.W., Gao, G.R., Feng, X.H.: Full-scale physical modeling of fissure grouting in deep underground rocks. Tunnel. Undergr. Space Technol. 89, 249–261 (2019). https://doi.org/10.1016/j.tust.2019.04.008

    Article  Google Scholar 

  32. Ye, F., Sun, C.H., Mao, J.H., Han, X., Chen, Z.: Analysis of grouting mechanism of C-S double-liquid slurry shield tunnel tube sheet considering viscosity timeliness and spatial effect. Chin. J. Highways 30(08), 49–56 (2017). https://doi.org/10.19721/j.cnki.1001-7372.2017.08.005. (in Chinese)

    Article  Google Scholar 

  33. Zhang, B., Zhou, Y.F., Zhang, X.F., Wang, Z.J., Yang, W., Ban, Y.X.: Experimental study on grouting diffusion law of the different crack widths in tunnel lining. KSCE J. Civ. Eng. 27(4), 1789–1799 (2023). https://doi.org/10.1007/s12205-023-2020-x

    Article  Google Scholar 

  34. Zhang, F., Xie, X., Huang, H.: Application of ground penetrating radar in grouting evaluation for shield tunnel construction. Tunn. Undergr. Space Technol.. Undergr. Space Technol. 25, 99–107 (2010). https://doi.org/10.1016/j.tust.2009.09.006

    Article  Google Scholar 

  35. Zhang, H.M., Liu, X.D.: Fracture Mechanics. China University of Mining and Technology Press, Beijing (2018). (in Chinese)

    Google Scholar 

  36. Zhang, L.Z., Zhang, Q.S., Liu, R.T., Li, S.C.: Grouting mechanism in fractured rock considering slurry-rock stress coupling effects. Chin. J. Geotech. Eng. 40(11), 2003–2011 (2018). https://doi.org/10.11779/CJGE201811006. (in Chinese)

    Article  Google Scholar 

  37. Zhang, Z.F., Kang, H.P., Jiang, Z.Y., Li, W.Z., Jiang, P.F., Cai, R.C., Zhu, Y.T., Wang, J.: Study and application of high-pressure splitting grouting modi fication technology in coalmine with depth more than 1 000 m. J. China Coal Soc. 45(3), 972–981 (2020). https://doi.org/10.13225/j.cnki.jccs.SJ19.1545. (in Chinese)

    Article  Google Scholar 

  38. Zheng, G., Zhang, X.S., Diao, Y., Lei, H.Y.: Experimental study on grouting in underconsolidated soil to control excessive settlement. Nat. Hazards 83(3), 1683–1701 (2016). https://doi.org/10.1007/s11069-016-2383-0

    Article  Google Scholar 

  39. Zhu, Y.S., Wang, X.L., Deng, S.H., Chen, W.L., Lv, M.M.: Grouting process simulation based on 3D fracture network considering fluid-structure interaction. Appl. Sci. 9(4), 1–19 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (Nos. 12172280, 42077274) and the Key Technology Innovation Team Project of Shaanxi Province (No. 2020JZ-53).

Author information

Authors and Affiliations

Authors

Contributions

Wang and Zhang wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Huimei Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhang, J., Liu, Y. et al. Penetration mechanism of grouting by using the cement-based slurry with time-dependent viscosity. Arch Appl Mech 94, 695–717 (2024). https://doi.org/10.1007/s00419-024-02546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-024-02546-0

Keywords

Navigation