Skip to main content
Log in

Buckling analysis of porous functionally graded GPL-reinforced conical shells subjected to combined forces

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents the analytical process of porous functionally graded graphene-reinforced truncated conical shells subjected to hydrostatic pressure and axial tension. Three types of graphene platelet (GPL) dispersion and three patterns of porous distribution were considered. A modified model, in which the volume fraction of the pores is regarded as the essential parameter, was built to evaluate the material properties. The static stability equations of the shells, coupled with the effect of the combined forces, were derived. The Galerkin integrate technique was employed to obtain the critical buckling hydrostatic pressure and axial tension. After the present method was validated, the influences of pores, GPLs, and shell geometrical characteristics were investigated in the parametric studies. The results show that the critical hydrostatic pressure and axial tension can be elevated by increasing the porous coefficient, semi-vertex, and length–thickness ratio. On the contrary, the critical pressure and tension are decreased with the rise of GPL mass fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sofiyev, A.H.: Review of research on the vibration and buckling of the FGM conical shells. Compos. Struct. 211, 301–317 (2019). https://doi.org/10.1016/j.compstruct.2018.12.047

    Article  Google Scholar 

  2. Sofiyev, A.H.: The Buckling of FGM truncated conical shells subjected to combined axial tension and hydrostatic pressure. Compos. Struct. 92, 488–498 (2010). https://doi.org/10.1016/j.compstruct.2009.08.033

    Article  Google Scholar 

  3. Sofiyev, A.H., Kuruoglu, N.: The stability of FGM truncated conical shells under combined axial and external mechanical loads in the framework of the shear deformation theory. Compos. B Eng. 92, 463–476 (2016). https://doi.org/10.1016/j.composi-tesb.2016.02.027

    Article  Google Scholar 

  4. Dung, D.V., Chan, D.Q.: Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orth-ogonal stiffeners based on FSDT. Compos. Struct. 159, 827–841 (2017). https://doi.org/10.1016/j.compstruct.2016.10.006

    Article  Google Scholar 

  5. Sofiyev, A.H.: Application of the FOSDT to the solution of buckling problem of FGM sandwich conical shells under hydrosta- tic pressure. Compos. B Eng. 144, 88–98 (2018). https://doi.org/10.1016/j.compositesb.2018.01.025

    Article  Google Scholar 

  6. Hu, H.T., Chen, H.C.: Buckling optimization of laminated truncated conical shells subjected to external hydrostatic compression. Compos. B Eng. 135, 95–109 (2018). https://doi.org/10.1016/j.compositesb.2017.09.065

    Article  CAS  Google Scholar 

  7. Gheisari, M., Nezamabadi, A., Najafzadeh, M.M., Jafari, S., Yousefi, P.: Functionally graded porous conical nanoshell buckling during axial compression using MCST and FSDT theories by DQ method. Exp. Tech. 47, 313–326 (2023). https://doi.org/10.1007/s40799-021-00541-6

    Article  Google Scholar 

  8. Duc, N.D., Cong, P.H., Anh, V.M., Quang, V.D., Tran, P., Tuan, N.D., Thinh, N.H.: Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment. Compos. Struct. 132, 597–609 (2015). https://doi.org/10.1016/j.compstruct.2015.05.072

    Article  Google Scholar 

  9. Duc, N.D., Seung-Eock, K., Chan, D.Q.: Thermal buckling analysis of FGM sandwich truncated conical shells reinf-orced by FGM stiffeners resting on elastic foundations using FSDT. J. Therm. Stresses 41, 331–365 (2018). https://doi.org/10.1080/01495739.2017.1398623

    Article  Google Scholar 

  10. Chan, D.Q., Dung, D.V., Hoa, L.K.: Thermal buckling analysis of stiffened FGM truncated conical shells resting on elastic foundations using FSDT. Acta Mech. 229, 2221–2249 (2018). https://doi.org/10.1007/s00707-017-2090-2

    Article  MathSciNet  Google Scholar 

  11. Hajlaoui, A., Chebbi, E., Dammak, F.: Three-dimensional thermal buckling analysis of functionally graded material structures using a modiffed FSDT-based solid-shell element. Int. J. Pres. Ves. Pip. 194, 104547 (2021). https://doi.org/10.1016/j.ijpvp.2021.104547

    Article  Google Scholar 

  12. Sofiyev, A.H.: Thermoelastic stability of freely supported functionally graded conical shells within the shear deformation theory. Compos. Struct. 152, 74–84 (2016). https://doi.org/10.1016/j.compstruct.2016.05.027

    Article  Google Scholar 

  13. Vinyas, M.: Nonlinear damping of auxetic sandwich plates with functionally graded magneto-electro-elastic facings under multiphysics loads and electromagnetic circuits. Compos. Struct. 290, 115523 (2022). https://doi.org/10.1016/j.compstruct.2022.115523

    Article  Google Scholar 

  14. Vinyas, M., Vishwas, M., Sathiskumar, A.P.: FEM-ANN approach to predict nonlinear pyro-coupled deflection of sandwich plates with agglomerated porous nanocomposite core and piezo-magneto-elastic facings in thermal environment. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2023.2201927

    Article  Google Scholar 

  15. Ansari, R., Torabi, J.: Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinf-orced composite conical shells under axial loading. Compos. B Eng. 95, 196–208 (2016). https://doi.org/10.1016/j.co-mpositesb.2016.03.080

    Article  CAS  Google Scholar 

  16. Hosseini, M., Talebitooti, M.: Buckling analysis of moderately thick FG carbon nanotube reinforced composite conical shells under axial compression by DQM. Mech. Mater. Struct. 25, 647–656 (2018). https://doi.org/10.1080/15376494.2017.1308597

    Article  CAS  Google Scholar 

  17. Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P., Thanh, N.V.: Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations. Thin Wall. Struct. 115, 300–310 (2017). https://doi.org/10.1016/j.tws.2017.02.016

    Article  Google Scholar 

  18. Soffyev, A.H., Turkaslan, B.E., Bayramov, R.P., Salamci, M.U.: Analytical solution of stability of FG-CNTRC conical shells under external pressures. Thin Wall. Struct. 144, 106338 (2019). https://doi.org/10.1016/j.tws.2019.106338

    Article  Google Scholar 

  19. Sofiyev, A.H., Tornabene, F., Dimitri, R., Kuruoglu, N.: Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading. Nanomaterials 10, 419 (2020). https://doi.org/10.3390/nano10030419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sofiyev, A.H., Kuruoglu, N.: Buckling analysis of shear deformable composite conical shells reinforced by CNTs s-ubjected to combined loading on the two-parameter elastic foundation. Def. Technol. 18, 205–218 (2022). https://doi.org/10.1016/j.dt.2020.12.007

    Article  Google Scholar 

  21. Avey, M., Sofiyev, A.H., Kuruoglu, N.: Influences of elastic foundations and thermal environments on the thermo-elastic buckling of nanocomposite truncated conical shells. Acta Mech. 233, 685–700 (2022). https://doi.org/10.1007/s00707-021-03139-6

    Article  MathSciNet  Google Scholar 

  22. Avey, M., Fantuzzi, N., Sofiyev, A.H.: Analytical solution of stability problem of nanocomposite cylindrical shells under combined loadings in thermal environments. Mathematics 11, 3781 (2023). https://doi.org/10.3390/math11173781

    Article  Google Scholar 

  23. Avey, M., Fantuzzi, N., Sofiyev, A.H.: Mathematical modeling and analytical solution of thermoelastic stability problem of functionally graded nanocomposite cylinders within different theories. Mathematics 10, 1081 (2022). https://doi.org/10.3390/math10071081

    Article  Google Scholar 

  24. Eskandary, K., Shishesaz, M., Moradi, S.: Buckling analysis of composite conical shells reinforced by agglomerated functionally graded carbon nanotube. Arch. Mech. Engn. 22, 132 (2022). https://doi.org/10.1016/j.compositesb.2016.03.080

    Article  CAS  Google Scholar 

  25. Kiani, Y.: Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment. Compos. B Eng. 156, 128–137 (2019). https://doi.org/10.1016/j.compositesb.2018.08.052

    Article  CAS  Google Scholar 

  26. Mahani, R.B., Eyvazian, A., Musharavati, F., Sebaey, T.A., Talebizadehsardari, P.: Thermal buckling of laminated Nano-Composite conical shell reinforced with graphene platelets. Thin Wall. Struct. 155, 106913 (2020). https://doi.org/10.1016/j.tws.2020.106913

    Article  Google Scholar 

  27. Li, Z.C., Chen, Y.Z., Zheng, J.X., Sun, Q.: Thermal-elastic buckling of the arch-shaped structures with FGP aluminum reinforced by composite graphene platelets. Thin Wall. Struct. 157, 107142 (2020). https://doi.org/10.1016/j.tws.2020.107142

    Article  Google Scholar 

  28. Hasan, H.M., Alkhfaji, S.S., Mutlag, S.A.: Torsional postbuckling characteristics of functionally graded graphene enhanced laminated truncated conical shell with temperature dependent material properties. Theor. Appl. Mech. Lett. 13, 100453 (2023). https://doi.org/10.1016/j.taml.2023.1I00453

    Article  Google Scholar 

  29. Ansari, R., Torabi, J., Hasrati, E.: Postbuckling analysis of axially-loaded functionally graded GPL-reinforced composite conical shells. Thin Wall. Struct. 148, 106594 (2020). https://doi.org/10.1016/j.tws.2019.106594

    Article  Google Scholar 

  30. Wu, H.L., Yang, J., Kitipornchai, S.: Mechanical analysis of functionally graded porous structures: a review. Int. J. Struct. Stab. Dyn. 20, 2041015 (2020). https://doi.org/10.1142/S0219455420410151

    Article  MathSciNet  Google Scholar 

  31. Kiarasi, F., Babaei, B., Sarvi, P., Asemi, K., Hosseini, M., Bidgol, M.O.: A review on functionally graded porous structures reinforced by graphene platelets. J. Comput. Appl. Mech. 52, 731–750 (2021). https://doi.org/10.22059/jcamech.2021.335739.675

    Article  Google Scholar 

  32. Vinyas, M.: Porosity effect on the energy harvesting behaviour of functionally graded magneto-electro-elastic fibre-reinforced composite beam. Eur. Phys. J. Plus. 137, 48 (2022). https://doi.org/10.1140/epjp/s13360-021-02235-9

    Article  CAS  Google Scholar 

  33. Vinyas, M.: Porosity effect on the nonlinear deflection of functionally graded magneto-electro-elastic smart shells under combined loading. Adv. Mater. Struct. 29, 1–27 (2021). https://doi.org/10.1080/15376494.2021.1875086

    Article  Google Scholar 

  34. Bahhadini, R., Saidi, A.R., Arabjamaloei, Z., Chanbari-Nejad-Parizi, A.: Vibration analysis of functionally graded graphene reinforced porous nanocomposite shells. Int. J. Appl. Mech. 11, 1950086 (2019). https://doi.org/10.1142/S1758825119500686

    Article  Google Scholar 

  35. Dong, Y.H., He, L.W., Wang, L., Li, Y.H., Yang, J.: Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study. Aerosp. Sci. Technol. 82–83, 466–478 (2018). https://doi.org/10.1016/j.ast.2018.09.037

    Article  Google Scholar 

  36. Dung, D.V., Nga, T.V., Vuong, P.M.: Nonlinear instability analysis of stiffened material sandwich cylindrical shells with general sigmoid law and power law in thermal environment using third-order shear deformation theory. J. Sandw. Struct. Mater. 21, 938–972 (2019). https://doi.org/10.1177/1099636217704863

    Article  Google Scholar 

  37. Shahgholian, D., Safarpour, M., Rahimi, A.R., Alibeigloo, A.: Buckling analyses of functionally graded graphene-re-inforced porous cylindrical shell using the Rayleigh-Ritz method. Acta Mech. 231, 1887–1902 (2020). https://doi.org/10.1007/s00707-020-02616-8

    Article  MathSciNet  Google Scholar 

  38. Hoa, L.K., Phi, B.G., Chan, D.Q., Hie, D.V.: Buckling analysis of FG porous truncated Conical shells resting on lastic foundations in the framework of the shear deformation theory. Adv. Appl. Mech. 14, 218–247 (2020). https://doi.org/10.4208/aamm.OA-2020-0202

    Article  Google Scholar 

  39. Le, C.T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H., Abdel-Wahab, M.: A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA. Compos. Struct. 259, 113216 (2021). https://doi.org/10.1016/j.compstruct.2020.113216

    Article  CAS  Google Scholar 

  40. Nemati, A.R., Mahmoodabadi, M.J.: Effect of micromechanical models on stability of functionally graded conical panels resting on Winkler-Pasternak foundation in various thermal environments. Arch. Appl. Mech. 90, 883–915 (2020). https://doi.org/10.1007/s00419-019-01646-6

    Article  ADS  Google Scholar 

  41. Allahkarami, F., Saryazdi, M.G., Tohidi, H.: Dynamic buckling analysis of bi-directional functionally graded porous truncated conical shell with different boundary conditions. Compos. Struct. 252, 112680 (2020). https://doi.org/10.1016/j.compstruct.2020.112680

    Article  Google Scholar 

  42. Fu, T., Wu, X., Xiao, Z.M., Chen, Z.B.: Dynamic instability analysis of porous FGM conical shells subjected to pa-rametric excitation in thermal environment within FSDT. Thin Wall. Struct. 158, 107202 (2021). https://doi.org/10.1016/j.tws.2020.107202

    Article  Google Scholar 

  43. Baruch, M., Harari, O., Singer, J.: Influence of in-plane boundary conditions on the stability of conical shells under hydrostatic pressure. Isra. J. Tech. 5, 12–24 (1967)

    Google Scholar 

  44. Wang, Y., Feng, C., Zhao, Z., Yang, J.: Eigenvalue buckling of functionally graded cylindrical shells reinforced wi-th graphene platelets (GPL). Compos. Struct. 202, 38–46 (2018). https://doi.org/10.1142/S175882511950068610.1016/j.compstruct.2017.10.005

    Article  Google Scholar 

Download references

Acknowledgements

The present research is funded by National Natural Science Foundation of China [No. 12162010], Natural Science Foundation of Guangxi [No. 2021GXNSFAA220087], and Postgraduate Innovation Program [No. 2023YCXS191]. The authors are grateful for these financial support.

Author information

Authors and Affiliations

Authors

Contributions

X.L. conceived this study and conducted manuscript writing. W.J. conducted table and graphic output of data. W.Y. verified the content of the article. W.W. participated in the drafting of the manuscript and made improvements.

Corresponding author

Correspondence to Weiwei Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$L_{11} () = A_{11} x\frac{{\partial^{2} ()}}{{\partial x^{2} }} + A_{11} \frac{\partial ()}{{\partial x}} - A_{22} \frac{()}{x} + \frac{1}{{x\sin^{2} \alpha }}A_{66} \frac{{\partial^{2} ()}}{{\partial \theta^{2} }}$$
$$L_{12} () = \left( {A_{12} + A_{66} } \right)\frac{1}{\sin \alpha }\frac{{\partial^{2} ()}}{\partial x\partial \theta } - (A_{22} + A_{66} )\frac{1}{x\sin \alpha }\frac{\partial ()}{{\partial \theta }}$$
$$\begin{aligned} L_{13} () & = - B_{11} x\frac{{\partial^{3} ()}}{{\partial x^{3} }} - (B_{12} + 2B_{66} )\frac{1}{{x\sin^{2} \alpha }}\frac{{\partial^{3} ()}}{{\partial x\partial \theta^{3} }} - B_{11} \frac{{\partial^{2} ()}}{{\partial x^{2} }} \\ & \quad + \left( {B_{12} + B_{22} + 2B_{66} } \right)\frac{1}{{x^{2} \sin^{2} \alpha }}\frac{{\partial^{2} ()}}{{\partial \theta^{2} }} + A_{12} \cot \alpha \frac{\partial ()}{{\partial x}} \\ & \quad + B_{22} \frac{1}{x}\frac{\partial ()}{{\partial x}} - A_{22} \cot \alpha \frac{1}{x}() \\ \end{aligned}$$
$$L_{21} () = \left( {A_{12} + A_{66} } \right)\frac{1}{\sin \alpha }\frac{{\partial^{2} ()}}{\partial x\partial \theta } + (A_{22} + A_{66} )\frac{1}{x\sin \alpha }\frac{\partial ()}{{\partial \theta }}$$
$$L_{22} () = A_{22} \frac{1}{{x\sin^{2} \alpha }}\frac{{\partial^{2} ()}}{{\partial \theta^{2} }} + A_{66} x\frac{{\partial^{2} ()}}{{\partial x^{2} }} + A_{66} \frac{\partial ()}{{\partial x}} - \frac{1}{x}A_{66} ()$$
$$\begin{aligned} L_{23} () & = - \left( {B_{12} + 2B_{66} } \right)\frac{1}{\sin \alpha }\frac{{\partial^{3} ()}}{{\partial x^{2} \partial \theta }} - B_{22} \frac{1}{{x^{2} \sin^{2} \alpha }}\frac{{\partial^{3} ()}}{{\partial \theta^{3} }} \\ & \quad - B_{22} \frac{1}{x\sin \alpha }\frac{{\partial^{2} ()}}{\partial x\partial \theta } + A_{22} \cot \alpha \frac{1}{x\sin \alpha }\frac{\partial ()}{{\partial \theta }} \\ \end{aligned}$$
$$\begin{aligned} L_{31} () & = B_{11} x\frac{{\partial^{3} ()}}{{\partial x^{3} }} + (B_{12} + 2B_{66} )\frac{1}{{x\sin^{2} \alpha }}\frac{{\partial^{3} ()}}{{\partial x\partial \theta^{2} }} + 2B_{11} \frac{{\partial^{2} ()}}{{\partial x^{2} }} \\ & \quad + B_{22} \frac{1}{{x^{2} \sin^{2} \alpha }}\frac{{\partial^{2} ()}}{{\partial \theta^{2} }} - (A_{12} \cot \alpha + \frac{1}{x}B_{22} )\frac{\partial ()}{{\partial x}} + \frac{1}{{x^{2} }}B_{22} () - A_{22} \cot \alpha \frac{1}{x}() \\ \end{aligned}$$
$$\begin{aligned} L_{32} () & = \left( {B_{11} + 2B_{66} } \right)\frac{1}{\sin \alpha }\frac{{\partial^{3} ()}}{{\partial x^{2} \partial \theta }} + B_{22} \frac{1}{{x^{2} \sin^{3} \alpha }}\frac{{\partial^{3} ()}}{{\partial \theta^{3} }} \\ & \quad - B_{22} \frac{1}{x\sin \alpha }\frac{{\partial^{2} ()}}{\partial x\partial \theta } + \left( {B_{22} \frac{1}{{x^{2} \sin \alpha }} - A_{22} \cot \alpha \frac{1}{x\sin \alpha }} \right)\frac{\partial ()}{{\partial \theta }} \\ \end{aligned}$$
$$\begin{aligned} L_{33} () & = - D_{11} x\frac{{\partial^{4} ()}}{{\partial x^{4} }} - D_{22} \frac{1}{{x^{3} \sin^{4} \alpha }}\frac{{\partial^{4} ()}}{{\partial \theta^{4} }} - (D_{12} + 2D_{66} )\frac{2}{{x\sin^{2} \alpha }}\frac{{\partial^{4} ()}}{{\partial x^{2} \partial \theta^{2} }} \\ & \quad + \left( {D_{12} + 2D_{66} } \right)\frac{2}{{x^{2} \sin^{2} \alpha }}\frac{{\partial^{3} ()}}{{\partial x\partial \theta^{2} }} - 2D_{11} \frac{{\partial^{3} ()}}{{\partial x^{3} }} + \left( {\frac{1}{x}D_{22} + 2B_{12} \cot \alpha + xK_{2} } \right)\frac{{\partial^{2} ()}}{{\partial x^{2} }} \\ & \quad + \left[ {B_{22} {\text{cot}}\alpha \frac{2}{{x^{2} \sin^{2} \alpha }} - \left( {D_{12} + 2D_{66} + D_{22} } \right)\frac{2}{{x^{3} \sin^{2} \alpha }} + \frac{{K_{2} }}{x\sin \alpha }} \right]\frac{{\partial^{2} ()}}{{\partial \theta^{2} }} \\ & \quad K_{2} \frac{\partial ()}{{\partial x}} - D_{22} \frac{1}{{x^{2} }}\frac{\partial ()}{{\partial x}} + B_{22} \cot \alpha \frac{1}{{x^{2} }}() - A_{22} \cot^{2} \alpha \frac{1}{x}() - xK_{1} () \\ \end{aligned}$$
$$L_{34} () = - \frac{1}{2}\left( {x\frac{\partial ()}{{\partial x}} + x^{2} \frac{{\partial^{2} ()}}{{\partial x^{2} }}} \right)$$
$$L_{35} () = - \frac{2}{\sin 2\alpha }\frac{{\partial^{2} ()}}{{\partial \theta^{2} }}$$
$$L_{36} () = \frac{1}{2}s_{1}^{2} \tan \alpha \frac{{\partial^{2} ()}}{{\partial x^{2} }}$$

where the stiffness coefficients \(A_{ij} ,B_{ij}\) and \(D_{{{\text{ij}}}}\) can be calculated by

$$\left( {A_{11} ,B_{11} ,D_{11} } \right)^{T} = \left( {A_{22} ,B_{22} ,D_{22} } \right)^{T} = \int_{ - 0.5h}^{0.5h} {(1,z,z^{2} )\frac{E(z)}{{1 - \mu^{2} (z)}}{\text{d}}z}$$
$$\left( {A_{12} ,B_{12} ,D_{12} } \right)^{T} = \left( {A_{21} ,B_{21} ,D_{21} } \right)^{T} = \int_{ - 0.5h}^{0.5h} {(1,z,z^{2} )\frac{\mu (z)E(z)}{{1 - \mu^{2} (z)}}{\text{d}}z}$$
$$\left( {A_{66} ,B_{66} ,D_{66} } \right)^{T} = \int_{ - 0.5h}^{0.5h} {(1,z,z^{2} )\frac{E(z)}{{2[1 + \mu (z)]}}\,{\text{d}}z}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Xl., Mo, W., Sun, W. et al. Buckling analysis of porous functionally graded GPL-reinforced conical shells subjected to combined forces. Arch Appl Mech 94, 299–313 (2024). https://doi.org/10.1007/s00419-023-02521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02521-1

Keywords

Navigation