Skip to main content
Log in

A size-dependent thermoelastic damping model for micro-beams based on modified gradient elasticity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

To investigate the size-dependent behavior of micro-beams with thermoelastic damping (TED), a new size-dependent thermoelastic damping model based on modified gradient elasticity is proposed in this study. The governing equations and boundary conditions are derived based on the modified gradient elasticity theory and the single-phase-lag thermal relaxation model. By utilizing the complex frequency method, the exact expression of thermoelastic damping is obtained from the model. The results indicate that there is a significant size effect of thermoelastic damping in micro-beams, and the critical thickness of the beam is related to the internal length scale. Different thermal parameters have varying degrees of influence on thermoelastic damping. Compared with other size-dependent thermoelastic damping models, the proposed thermoelastic damping model in this paper is characterized by its clear physical interpretation and simple form. Some theoretical guidance for the designing of high-quality micro/nano-electromechanical resonators can be provided by the new model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ekinci, K.L., Roukes, M.L.: Nanoelectromechanical systems. Rev. Sci. Instrum. 76(6), 25–30 (2005). https://doi.org/10.1063/1.1927327

    Article  Google Scholar 

  2. Beek, J., Puers, R.: A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 22(1), 013001 (2012). https://doi.org/10.1088/0960-1317/22/1/013001

    Article  Google Scholar 

  3. Wei, L., You, Z.W., Kuai, X.B., Zhang, M.L., Yang, F.H., Wang, X.D.: MEMS thermal-piezoresistive resonators, thermal-piezoresistive oscillators, and sensors. Microsyst. Technol. 29(1), 1–17 (2023)

    Article  Google Scholar 

  4. Sun, Y., Fang, D., Sou, A.K.: Thermoelastic damping in micro-beam resonators. Int. J. Solids Struct. 43, 3213–3229 (2006). https://doi.org/10.1016/j.ijsolstr.2005.08.011

    Article  MATH  Google Scholar 

  5. Guo, X., Yi, Y.B.: Suppression of thermoelastic damping in MEMS beam resonators by piezoresistivity. J. Sound Vib. 333, 1079–1095 (2014). https://doi.org/10.1016/j.jsv.2013.09.041

    Article  Google Scholar 

  6. Zuo, W., Li, P., Du, J., et al.: Thermoelastic damping in anisotropic piezoelectric microbeam resonator. Int J Heat Mass Tran. 199, 123493 (2022)

    Article  Google Scholar 

  7. Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro- and nano-mechanical systems. Phys. Rev. B 61(8), 5600–5609 (2000). https://doi.org/10.1103/PhysRevB.61.5600

    Article  Google Scholar 

  8. Xu, X., Li, S.R.: Analysis of thermoelastic damping for functionally graded material micro-beam. J Theor App Mech-Pol. 49(2), 308–316 (2017)

    Google Scholar 

  9. Zhao, G., Shi, S., Gu, B., He, T.: Thermoelastic damping analysis to nano-resonators utilizing the modified couple stress theory and memory-dependent heat conduction model. J. Vib. Eng. Technol. 10, 715–726 (2022). https://doi.org/10.1007/s42417-021-00401-y

    Article  Google Scholar 

  10. Zener, C.: Internal friction in solids I Theory of internal friction in reeds. Phys. Rev. 52(3), 230–235 (1937)

    Article  MATH  Google Scholar 

  11. Prabhakar, S., Paidoussis, M.P., Vengallatore, S.: Analysis of frequency shifts due to thermoelastic coupling in flexural-mode micromechanical and nanomechanical resonators. J. Sound Vib. 323(1–2), 385–396 (2009). https://doi.org/10.1016/j.jsv.2008.12.010

    Article  Google Scholar 

  12. Chandorkar, S.A., Candler, R.N., Duwel, A.: Multimode thermoelastic dissipation. J. Appl. Phys. 105(4), 043505 (2009). https://doi.org/10.1063/1.3072682

    Article  Google Scholar 

  13. Prabhakar, S., Vengallatore, S.: Thermoelastic damping in bilayered micromechanical beam resonators. J. Micromech. Microeng. 17(3), 532–538 (2007). https://doi.org/10.1088/0960-1317/17/3/016

    Article  Google Scholar 

  14. Sun, Y.X., Tohmyoh, H.: Thermoelastic damping of the axisymmetric vibration of circular plate resonators. J. Sound Vib. 319(1–2), 392–405 (2009). https://doi.org/10.4028/www.scientifc.net/AMM.313-314.600

    Article  Google Scholar 

  15. Wong, S.J., Fox, C.H.J., McWilliam, S., Eley, R.: A preliminary investigation of thermo-elastic damping in silicon rings. J. Micromech. Microeng. 14(9), S108–S113 (2004). https://doi.org/10.1088/0960-1317/14/9/019

    Article  Google Scholar 

  16. Azizi, S., Ghazavi, M.R., Rezazadeh, G., Khadem, S.E.: Thermoelastic damping in a functionally graded piezoelectric micro-resonator. Int. J. Mech. Mater. Des. 11(4), 357–369 (2015). https://doi.org/10.1007/s10999-014-9285-7

    Article  Google Scholar 

  17. Yeo, I., Assis, P.L., Gloppe, A., Dupont-Ferrier, E., Verlot, P., Malik, N.S., Dupuy, E., Claudon, J., Gérard, J.M., Auffèves, A., Nogues, G., Seidelin, S., Poizat, J.P., Arcizet, O., Richard, M.: Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. Nat. Nanotechnol. 9(2), 106–110 (2014). https://doi.org/10.1038/nnano.2013.274

    Article  Google Scholar 

  18. Abdolvand, R., Johari, H., Ho, G.K., Erbil, A., Ayazi, F.: Quality factor in trench refilled polysilicon beam resonators. J Microelectromech Syst. 15(3), 471–478 (2006)

    Article  Google Scholar 

  19. Borjalilou, V., Asghari, M., Bagheri, E.: Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and dual-phase-lag heat conduction model. J. Therm. Stresses 42, 801–814 (2019). https://doi.org/10.1080/01495739.2019.1590168

    Article  Google Scholar 

  20. Cattaneo, C.: A form of heat conduction equation that eliminates the paradox of instantaneous propagation. C. R. Phys. 247, 431–433 (1958)

    MATH  Google Scholar 

  21. Tzou, D.Y.: A unified field approach for heat conduction from macro-to-micro-scales. J. Heat. Transf. 117, 8–16 (1995). https://doi.org/10.1115/1.2822329

    Article  Google Scholar 

  22. Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30(3), 231–238 (2007). https://doi.org/10.1080/01495730601130919

    Article  Google Scholar 

  23. Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on the memory-dependent derivative. Int. J. Eng. Sci. 81, 123–134 (2014). https://doi.org/10.1016/j.ijengsci.2014.04.014

    Article  MathSciNet  MATH  Google Scholar 

  24. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (2007). https://doi.org/10.1016/0022-5096(67)90024-5

    Article  MATH  Google Scholar 

  25. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972). https://doi.org/10.1007/BF00045689

    Article  MATH  Google Scholar 

  26. Guo, X., Yi, Y.B., Pourkamali, S.: A finite element analysis of thermoelastic damping in vented MEMS beam resonators. Int. J. Mech. Sci. 74, 73–82 (2013). https://doi.org/10.1016/j.ijmecsci.2013.04.013

    Article  Google Scholar 

  27. Wang, Y.W., Zhang, X.Y., Li, X.F.: Thermoelastic damping in a micro-beam based on the memory-dependent generalized thermoelasticity. Wave. Random Complex. 32, 2812–2829 (2020). https://doi.org/10.1080/17455030.2020.1865590

    Article  MATH  Google Scholar 

  28. Nix, W.D.: Mechanical properties of thin films. Metall. Mater. Trans. A 20, 2217–2245 (1989). https://doi.org/10.1007/BF02666659

    Article  Google Scholar 

  29. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475–487 (1994). https://doi.org/10.1016/0956-7151(94)90502-9

    Article  Google Scholar 

  30. Marab, C., Tdj, D., Cl, B., et al.: A review of size-dependent continuum mechanics models for micro- and nano-structure. Thin Wall Struct. 170, 108562 (2022). https://doi.org/10.1016/j.tws.2021.108562

    Article  Google Scholar 

  31. Zhou, H., Shao, D., Li, P.: Thermoelastic damping and frequency shift in micro/nano-ring resonators considering the nonlocal single-phase-lag effect in the thermal field. Appl. Math. Model. 115, 237–258 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  32. Aifantis, E.C.: Gradient deformation models at nano, micro, and macro scales. J. Eng. Mater. Technol. 121(2), 189–202 (1999). https://doi.org/10.1115/1.2812366

    Article  Google Scholar 

  33. Eringen, A.C.: Nonlocal continuum field theories. Springer, New York (2002)

    MATH  Google Scholar 

  34. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011). https://doi.org/10.1016/j.ijsolstr.2011.05.002

    Article  Google Scholar 

  35. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress-based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  36. Rezazadeh, G., Vahdat, A.S., Tayefeh-Rezaei, S., Cetinkaya, C.: Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech. 223, 1137–1152 (2012). https://doi.org/10.1007/s00707-012-0622-3

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhao, G.B., Shi, S.H., Gu, B.D., He, T.H.: Thermoelastic damping analysis to nano-resonators utilizing the modifed couple stress theory and the memory-dependent heat conduction model. J Vib Eng Technol. 10, 715–726 (2022). https://doi.org/10.1007/s42417-021-00401-y

    Article  Google Scholar 

  38. Kumar, H., Mukhopadhyay, S.: Thermoelastic damping analysis for size-dependent microplate resonators utilizing the modified couple stress theory and the three-phase-lag heat conduction model. Int. J. Heat Mass Transfer. 148, 1118997 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118997

    Article  Google Scholar 

  39. Zhao, B., Zheng, Y.R., Li, X.G., Hou, J.L.: A new form of strain gradient elasticity. In: Tu, S.T., Wang, Z.D., Sih, G.C. (eds.) Structural Integrity and Materials Ageing in Extreme Conditions. East China University of Science and Technology Press, Shanghai (2010)

    Google Scholar 

  40. Song, Z., Zhao, B., He, J., Zheng, Y.: Modified gradient elasticity and its finite element method for shear boundary layer analysis. Mech. Res. Commun. 62, 146–154 (2014). https://doi.org/10.1016/j.mechrescom.2014.09.008

    Article  Google Scholar 

  41. Zhao, B., Liu, T., Pan, J., Peng, X.L., Tang, X.S.: A stress analytical solution for Mode III crack with unmodified gradient elasticity. Mech. Res. Commun. 84, 142–147 (2017). https://doi.org/10.1016/j.mechrescom.2017.07.003

    Article  Google Scholar 

  42. Zhao, B., Liu, T., Chen, J., Peng, X., Song, Z.: A new Bernoulli-Euler beam model based on modified gradient elasticity. Arch. Appl. Mech. 89, 277–289 (2018). https://doi.org/10.1007/s00419-018-1464-9

    Article  Google Scholar 

  43. Zhao, B., Chen, J., Liu, T., Song, W., Zhang, J.: A new Timoshenko beam model based on modified gradient elasticity: Shearing effect and size effect of micro-beam. J. Compos. Struct. 223, 110946 (2019). https://doi.org/10.1016/j.compstruct.2019.110946

    Article  Google Scholar 

  44. Zhao, B., Long, C., Peng, X., Chen, J., Liu, T., Zhang, Z., Lai, A.: Size effect and geometrically nonlinear effect on thermal post-buckling of micro-beams: a new theoretical analysis. Continuum Mech. Thermodyn. 34, 519–532 (2022). https://doi.org/10.1007/s00161-021-01067-3

    Article  MathSciNet  MATH  Google Scholar 

  45. Eghbali, M., Hosseini, S.A.: On moving harmonic load and dynamic response of carbon nanotube-reinforced composite beams using higher-order shear deformation theories. Mech Adv Compos Struct. 10(2), 257–270 (2023)

    Google Scholar 

  46. Eghbali, M., Hosseini, S.A., Pourseifi, M.: An dynamical evaluation of size-dependent weakened nano-beam based on the nonlocal strain gradient theory. J. Strain Anal. Eng. 58(5), 357–366 (2023). https://doi.org/10.1177/03093247221135210

    Article  Google Scholar 

  47. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972). https://doi.org/10.1016/0020-7225(72)90070-5

    Article  MathSciNet  MATH  Google Scholar 

  48. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003). https://doi.org/10.1016/S0020-7225(02)00210-0

    Article  Google Scholar 

  49. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  50. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity [J]. Arch. Ration. Mech. AN. 11, 415–448 (1962). https://doi.org/10.1016/0043-1648(63)90083-8

    Article  MathSciNet  MATH  Google Scholar 

  51. Deng, W.M., Li, L., Hu, Y.J., Wang, X.L., Li, X.B.: Thermoelastic damping of graphene nanobeams by considering the size effects of nanostructure and heat conduction. J. Therm. Stresses 41, 1–19 (2018). https://doi.org/10.1080/01495739.2018.1466669

    Article  Google Scholar 

  52. Zhang, H., Kim, T., Choi, G., Cho, H.: Thermoelastic damping in micro- and nanomechanical beam resonators considering size effects. Int. J. Heat. MassTran. 103, 783–790 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.044

    Article  Google Scholar 

  53. Wang, Y.W., Li, X.F.: Synergistic effect of memory-size-microstructure on thermoelastic damping of a micro-plate. Int. J. Heat. Mass Tran. 181, 122031 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122031

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the postgraduate research innovation project of Changsha University of Science and Technology (No. CXCLY2022047), the Natural Science Foundation of Hunan Province of China (No. 2022JJ30583), the Natural Science Research Project of Hunan Education Department (No. 21B0315), the Civil Engineering Key Subject Foundation of Changsha University of Science and Technology (No. 18ZDXK04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Liu, L., Chen, J. et al. A size-dependent thermoelastic damping model for micro-beams based on modified gradient elasticity. Arch Appl Mech 93, 4527–4540 (2023). https://doi.org/10.1007/s00419-023-02510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02510-4

Keywords

Navigation