Skip to main content
Log in

Novel design for acoustic silencers for ducts with flow based on the bound states in the continuum

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The concept of bound states in the continuum and leaky resonances is utilized in the design of a reactive silencer that can effectively suppress significant spectral lines while maintaining a low-pressure drop within the flow duct and does not require additional installation space. By adjusting the geometrical parameters of thin plates that are embedded in a waveguide, quasi-bound states (or leaky resonances) can be achieved. An optimization algorithm is employed to fine-tune these parameters, and this process is illustrated through two specific examples. The resulting design is validated through numerical simulations that account for the effects of low Mach number flow. The investigations showed that it is possible to design a spectral silencer with low-pressure drop based on the chosen approach. By combining several leaky resonances, stopbands were created with a transmission loss of up to 17 dB in a frequency range of 10 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hsu, C.W., Zhen, B., Stone, A.D., Joannopoulos, J.D., Soljačić, M.: Bound states in the continuum. Nat. Rev. Mater. 1(9), 1–13 (2016). https://doi.org/10.1038/natrevmats.2016.48

    Article  Google Scholar 

  2. Sadreev, A.F.: Interference traps waves in an open system: bound states in the continuum. Rep. Prog. Phys. 84(5), 055901 (2021). https://doi.org/10.1088/1361-6633/abefb9

    Article  MathSciNet  Google Scholar 

  3. Parker, R.: Resonance effects in wake shedding from parallel plates: Some experimental observations. J. Sound Vib. 4(1), 62–72 (1966). https://doi.org/10.1016/0022-460x(66)90154-4

    Article  Google Scholar 

  4. Parker, R.: Resonance effects in wake shedding from parallel plates: Calculation of resonant frequencies. J. Sound Vib. 5(2), 330–343 (1967). https://doi.org/10.1016/0022-460x(67)90113-7

    Article  Google Scholar 

  5. Evans, D.V., Levitin, M., Vassiliev, D.: Existence theorems for trapped modes. J. Fluid Mech. 261, 21–31 (1994). https://doi.org/10.1017/s0022112094000236

    Article  MathSciNet  MATH  Google Scholar 

  6. Evans, D.: Trapped modes embedded in the continuous spectrum. Q. J. Mech. Appl. Mech. 51(2), 263–274 (1998). https://doi.org/10.1093/qjmam/51.2.263

    Article  MathSciNet  MATH  Google Scholar 

  7. Aslanyan, A.: Complex resonances in acoustic waveguides. Q. J. Mech. Appl. Mech. 53(3), 429–447 (2000). https://doi.org/10.1093/qjmam/53.3.429

    Article  MathSciNet  MATH  Google Scholar 

  8. Linton, C.M., McIver, M., McIver, P., Ratcliffe, K., Zhang, J.: Trapped modes for off-centre structures in guides. Wave Motion 36(1), 67–85 (2002). https://doi.org/10.1016/s0165-2125(02)00006-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Duan, Y., Koch, W., Linton, C.M., McIver, M.: Complex resonances and trapped modes in ducted domains. J. Fluid Mech. 571, 119–147 (2007). https://doi.org/10.1017/s0022112006003259

    Article  MathSciNet  MATH  Google Scholar 

  10. Hein, S., Koch, W.: Acoustic resonances and trapped modes in pipes and tunnels. J. Fluid Mech. 605, 401–428 (2008). https://doi.org/10.1017/s002211200800164x

    Article  MATH  Google Scholar 

  11. Hein, S., Koch, W., Nannen, L.: Fano resonances in acoustics. J. Fluid Mech. 664, 238–264 (2010). https://doi.org/10.1017/S0022112010003757

    Article  MathSciNet  MATH  Google Scholar 

  12. Hein, S., Koch, W., Nannen, L.: Trapped modes and fano resonances in two-dimensional acoustical duct-cavity systems. J. Fluid Mech. 692, 257–287 (2012). https://doi.org/10.1017/jfm.2011.509

    Article  MATH  Google Scholar 

  13. Lyapina, A.A., Pilipchuk, A.S., Sadreev, A.F.: Trapped modes in a non-axisymmetric cylindrical waveguide. J. Sound Vib. 421, 48–60 (2018). https://doi.org/10.1016/j.jsv.2018.01.056

    Article  Google Scholar 

  14. Sadreev, A.F., Pilipchuk, A.S., Lyapina, A.A.: Tuning of fano resonances by rotation of continuum: Wave faucet. EPL 117(5), 50011 (2017). https://doi.org/10.1209/0295-5075/117/50011

    Article  Google Scholar 

  15. Chesnel, L., Pagneux, V.: Simple examples of perfectly invisible and trapped modes in waveguides. Q. J. Mech. Appl. Mech. 71(3), 297–315 (2018). https://doi.org/10.1093/qjmam/hby006

    Article  MathSciNet  MATH  Google Scholar 

  16. Chesnel, L., Pagneux, V.: From zero transmission to trapped modes in waveguides. J. Phys. A: Math. Theor. 52(16), 165304 (2019). https://doi.org/10.1088/1751-8121/ab0eeb

    Article  MathSciNet  MATH  Google Scholar 

  17. Deriy, I., Toftul, I., Petrov, M., Bogdanov, A.: Bound states in the continuum in compact acoustic resonators. Phys. Rev. Lett. 128(8), 084301 (2022). https://doi.org/10.1103/physrevlett.128.084301

    Article  MathSciNet  Google Scholar 

  18. Huang, S., Liu, T., Zhou, Z., Wang, X., Zhu, J., Li, Y.: Extreme sound confinement from quasibound states in the continuum. Phys. Rev. Appl. 14(2), 021001 (2020). https://doi.org/10.1103/physrevapplied.14.021001

    Article  Google Scholar 

  19. Huang, S., Xie, S., Gao, H., Hao, T., Zhang, S., Liu, T., Li, Y., Zhu, J.: Acoustic purcell effect induced by quasibound state in the continuum. Fundam. Res. (2022). https://doi.org/10.1016/j.fmre.2022.06.009

    Article  Google Scholar 

  20. Huang, L., Chiang, Y.K., Huang, S., Shen, C., Deng, F., Cheng, Y., Jia, B., Li, Y., Powell, D.A., Miroshnichenko, A.E.: Sound trapping in an open resonator. Nat. Commun. 12(1), 4819 (2021). https://doi.org/10.1038/s41467-021-25130-4

    Article  Google Scholar 

  21. Schneider, M., Feldmann, C.: Psychoacoustic evaluation of fan noise. Proceeding of Fan (2015)

  22. Czwielong, F., Soldat, J., Becker, S.: On the interactions of the induced flow field of heat exchangers with axial fans. Exp. Therm. Fluid Sci. 139, 110697 (2022). https://doi.org/10.1016/j.expthermflusci.2022.110697

    Article  Google Scholar 

  23. Liu, J., Herrin, D., Seybert, A.: Application of micro-perforated panels to attenuate noise in a duct. Technical report, SAE Technical Paper (2007). https://doi.org/10.4271/2007-01-2196

  24. Sack, S., Åbom, M.: Modal filters for mitigation of in-duct sound. In: Proceedings of Meetings on Acoustics 172ASA, vol. 29, p. 040004 (2016). https://doi.org/10.1121/2.0000473 . Acoustical Society of America

  25. Floss, S., Kaltenbacher, M., Karlowatz, G.: Application and simulation of micro-perforated panels in hvac systems. Technical report, SAE Technical Paper (2018)

  26. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007). https://doi.org/10.1162/evco.2007.15.1.1

    Article  Google Scholar 

  27. Ildelchik, I.E.: Handbook of Hydraulic Resistance, 3rd edn, Washington (1986)

  28. Kubas, Š., Kapjor, A., Vantúch, M., Čaja, A.: Determination of pressure loss of silencers during air transport in air conditioning. Transp. Res. Procedia 55, 707–714 (2021). https://doi.org/10.1016/j.trpro.2021.07.039

  29. Chmielewski, B., Herrero-Durá, I., Nieradka, P.: Pressure loss in ducts by dissipative splitter silencers: Comparative study of standardized, numerical and experimental results. Appl. Sci. 11(22), 10998 (2021). https://doi.org/10.3390/app112210998

    Article  Google Scholar 

  30. Munjal, M.L.: Acoustics of Ducts and Mufflers, 2nd edn. Wiley, Nashville (2014)

    Google Scholar 

  31. King, P.D.C., Cox, T.J.: Acoustic band gaps in periodically and quasiperiodically modulated waveguides. J. Appl. Phys. 102(1), 014902 (2007). https://doi.org/10.1063/1.2749483

    Article  Google Scholar 

  32. Czwielong, F., Hruška, V., Bednařík, M., Becker, S.: On the acoustic effects of sonic crystals in heat exchanger arrangements. Appl. Acoust. 182, 108253 (2021). https://doi.org/10.1016/j.apacoust.2021.108253

  33. Oh, T.S., Jeon, W.: Bandgap characteristics of phononic crystals in steady and unsteady flows. J. Acoust. Soc. Am. 148(3), 1181–1192 (2020). https://doi.org/10.1121/10.0001767

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic (GACR) Grant No. 22-33896S.

Author information

Authors and Affiliations

Authors

Contributions

VH, AK conceptualized the study; VH, AK, FC helped in methodology; VH, FC were involved in writing—original draft preparation; MB was involved in writing—review and editing, funding acquisition and supervision.

Corresponding author

Correspondence to Viktor Hruška.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hruška, V., Krpenský, A., Bednar̆ík, M. et al. Novel design for acoustic silencers for ducts with flow based on the bound states in the continuum. Arch Appl Mech 93, 4517–4526 (2023). https://doi.org/10.1007/s00419-023-02508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02508-y

Keywords

Navigation