Skip to main content
Log in

Comments on nonlinear dynamics asymmetric behavior in bi-stable energy harvesters

  • Technical notes
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, we explore the nonlinear dynamics for capturing energy from a device, which is considered support with cantilever beam ferromagnetic containing piezoceramic patches connected to an electrical circuit that collects energy for capture. The free end of the ferromagnetic cantilever beam is under the effect of two magnetic poles, and we consider an asymmetric potential for the magnetic poles. However, the influence of asymmetry in bi-stable energy collectors can change the potential well and adjust the distribution of its potential energy. Charging in the potential well also modifies the unstable equilibrium positions thus altering the dynamic characteristics of the device and thus benefiting the use of energy under various excitation conditions. Furthermore, asymmetric potentials combine with the movement of human lower limbs for applications in energy harvesting devices in such displacement. As numerical results, we explored the nonlinear dynamics and established the sets of parameters for the convergence of the trajectories and the regions of maximum average output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Lenz, W.B., Tusset, A.M., Ribeiro, M.A., Balthazar, J.M.: Neuro fuzzy control on horizontal axis wind turbine. Meccanica 55(1), 87–101 (2020)

    Article  MathSciNet  Google Scholar 

  2. Lenz, W.B., Ribeiro, M.A., Rocha, R.T., Balthazar, J.M., Tusset, A.M.: Numerical simulations and control of offshore energy harvesting using piezoelectric materials in a portal frame structure. Shock Vib. 2021, 1–11 (2021)

    Article  Google Scholar 

  3. Ribeiro, M.A., Tusset, A.M., Lenz, W.B., Felix, J.L., Litak, G., Balthazar, J.M.: Numerical exploratory of a magneto piezo elastic oscillator with Bouc–Wen damping to energy harvesting. In: AIP Conference Proceedings, vol. 2425, p. 410006 (2022). AIP Publishing LLC

  4. Ribeiro, M.A., Tusset, A.M., Lenz, W.B., Balthazar, J.M.: Dynamic analysis of the non-linear behavior of an ocean buoy for energy harvesting. Eur. Phys. J. Spec. Top. 230, 3599–3602 (2021)

    Article  Google Scholar 

  5. Ribeiro, M.A., Balthazar, J.M., Lenz, W.B., Felix, J.L., Litak, G., Tusset, A.M.: Fractional dynamical behavior of an elastic magneto piezo oscillator including non-ideal motor excitation. Axioms 11(12), 667 (2022)

    Article  Google Scholar 

  6. Kononenko, V.O.: Vibrating Systems with a Limited Power Supply. Iliffe (1969)

  7. Cveticanin, L., Zukovic, M., Balthazar, J.M.: Dynamics of Mechanical Systems with Non-ideal Excitation. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  8. Jiang, W.-A., Han, X.-J., Chen, L.-Q., Bi, Q.-S.: Bursting vibration-based energy harvesting. Nonlinear Dyn. 100, 3043–3060 (2020)

    Article  Google Scholar 

  9. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(25), 254102 (2009)

    Article  Google Scholar 

  10. Wang, W., Cao, J., Bowen, C.R., Inman, D.J., Lin, J.: Performance enhancement of nonlinear asymmetric bistable energy harvesting from harmonic, random and human motion excitations. Appl. Phys. Lett. 112(21), 213903 (2018)

    Article  Google Scholar 

  11. Litak, G., Friswell, M., Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96(21), 214103 (2010)

    Article  Google Scholar 

  12. Liang, H., Hao, G., Olszewski, O.Z.: A review on vibration-based piezoelectric energy harvesting from the aspect of compliant mechanisms. Sens. Actuators A Phys. 331, 112743 (2021)

    Article  Google Scholar 

  13. Fang, S., Zhou, S., Yurchenko, D., Yang, T., Liao, W.-H.: Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: a review. Mech. Syst. Signal Process. 166, 108419 (2022)

    Article  Google Scholar 

  14. Fu, H., Yeatman, E.M.: Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: theoretical modelling and experimental validation. Mech. Syst. Signal Process. 125, 229–244 (2019)

    Article  Google Scholar 

  15. Ribeiro, M.A., Balthazar, J.M., Daum, H.H., Tusset, A.M.: Nonlinear dynamics behavior and its control under frequency-varying excitations for energy harvesting. Int. J. Nonlinear Dyn. Control 1(1), 1–16 (2023)

    Google Scholar 

  16. Zhou, S., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Norenberg, J.P., Cunha, A., Jr., da Silva, S., Varoto, P.S.: Global sensitivity analysis of asymmetric energy harvesters. Nonlinear Dyn. 109(2), 443–458 (2022)

    Article  Google Scholar 

  18. Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc–Wen model, a survey. Arch. Comput. Methods Eng. 16, 161–188 (2009)

    Article  MATH  Google Scholar 

  19. Chang, C.-M., Strano, S., Terzo, M.: Modelling of hysteresis in vibration control systems by means of the Bouc–Wen model. Shock Vib. 2016, 1–14 (2016)

    Article  Google Scholar 

  20. Felix, J.L.P., Bianchin, R.P., Almeida, A., Balthazar, J.M., Rocha, R.T., Brasil, R.M.: On energy transfer between vibration modes under frequency-varying excitations for energy harvesting. In: Applied Mechanics and Materials, vol. 849, pp. 65–75 (2016). Trans Tech Publ

  21. Miguel, L.P., de Oliveira Teloli, R., da Silva, S.: Some practical regards on the application of the harmonic balance method for hysteresis models. Mech. Syst. Signal Process. 143, 106842 (2020)

    Article  Google Scholar 

  22. Nie, Z.-Y., Liu, R.-J., Wang, Q.-G., Guo, D.-S., Ma, Y.-J., Lan, Y.-H.: Novel identification approach for nonlinear systems with hysteresis. Nonlinear Dyn. 95, 1053–1066 (2019)

    Article  MATH  Google Scholar 

  23. Priya, S., Inman, D.J.: Energy Harvesting, vol. 21. Springer (2009)

  24. Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R., de Pontes, B.R., Felix, J.L., Bueno, A.M.: Application of passive control to energy harvester efficiency using a nonideal portal frame structural support system. J. Intell. Mater. Syst. Struct. 25(4), 417–429 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the CNPq, CAPES, FAPESP and FA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio A. Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, M.A., Daum, H.H., Tusset, A.M. et al. Comments on nonlinear dynamics asymmetric behavior in bi-stable energy harvesters. Arch Appl Mech 93, 4273–4278 (2023). https://doi.org/10.1007/s00419-023-02507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02507-z

Keywords

Navigation