Skip to main content
Log in

Analytical solution for contact and crack problem ın homogeneous half-plane

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this study, the frictionless contact and crack problem of an elastic homogeneous semi-infinite plane has been investigated according to the elasticity theory. The problem has been solved as a superposition of the separate solutions of the contact and crack problem. The aim of this study is to find sub-punch stress distributions and stress intensity factors due to opening mode and shear mode for different loading conditions and geometric sizes. There are two rigid punches on the semi-infinite plane and P and Q loads are transferred to the semi-infinite plane by these punches. Problem has been considered as plain strain because of the geometry of the problem. The effect of the mass forces has not been included, the stress and displacement expressions to be used for the contact problem have been obtained by using Navier equations and Fourier integral transformation technique, and the boundary conditions determined for the problem has been applied. The equations to be used for the crack problem have been specified and the boundary conditions for the crack problem have been applied to these equations. The problem has been reduced to an integral equation system consisting of four singular integral equations where contact stresses and crack displacements are unknown. Numerical solution of the integral equation system has been realized by using Jacobi polynomials. Numerical results on sub-punch stress distributions and stress intensity factors have been obtained for different loading conditions, geometric sizes and presented by graphics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Adams, G.G., Bogy, D.B.: The plane symmetric contact problem for dissimilar elastic semi-infinite strips of different widths. ASME J. Appl. Mech. 44(4), 604–610 (1977)

    Article  MATH  Google Scholar 

  2. Akbarov, S., İlhan, N.: Dynamics of a system comprising an orthotropic layer and orthotropic half-plane under the action of an oscillating moving load. Int. J. Solids Struct. 46(21), 3873–3881 (2009)

    Article  MATH  Google Scholar 

  3. Adıyaman, G., Birinci, A., Öner, E.: A receding contact problem between a functionally graded layer and two homogeneous quarter planes. Acta Mech. 227, 1753–1766 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arslan, O. N. U. R.: Solution of the plane contact problem between a finite-thickness laterally graded solid and a rigid stamp of an arbitrary tip-profile. Archiv. Mech. 71(6) (2019).

  5. Arslan, O.: Frictional contact problem of an anisotropic laterally graded layer loaded by a sliding rigid stamp. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 234(10), 2024–2041 (2020)

    Article  Google Scholar 

  6. Birinci, A., Adıyaman, G., Yaylacı, M., Öner, E.: Analysis of continuous and discontinuous cases of a contact problem using analytical method and FEM. Latin Am. J. Solids Struct. 12, 1771–1789 (2015)

    Article  Google Scholar 

  7. Chen, Y.F., Erdoğan, F.: The interface crack problem for a nonhomogeneous coating bonded to homogeneous substrate. J. Mech. Phys. Solids 44(5), 771–787 (1996)

    Article  Google Scholar 

  8. Chidlow, S.J., Teodorescu, M.: Two-dimensional contact mechanics problems involving inhomogeneously elastic solids split into three distnict layers. Int. J. Eng. Sci. 70, 102–123 (2013)

    Article  MATH  Google Scholar 

  9. Çömez, İ, Erdöl, R.: Frictional contact problem of a rigid stamp and an elastic layer bonded to a homogeneous substrate. Arch. Appl. Mech. 83, 15–24 (2013)

    Article  MATH  Google Scholar 

  10. Çömez, İ: Frictional moving contact problem of an orthotropic layer indented by a rigid cylindrical punch. Mech. Mater. 133, 120–127 (2019)

    Article  Google Scholar 

  11. Dağ, S., Erdogan, F.: A surface crack in a graded medium loaded by a sliding rigid stamp. Eng. Fract. Mech. 69(14–16), 1729–1751 (2002)

    Article  Google Scholar 

  12. Dağ, S.: Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach. Eng. Fract. Mech. 73(18), 2802–2828 (2006)

    Article  Google Scholar 

  13. Dağ, S., Apatay, T., Güler, M.A., Gülgeç, M.: A surface crack in graded coating subjected to sliding frictional contact. Eng. Fract. Mech. 80, 72–91 (2012)

    Article  Google Scholar 

  14. El-Borgi, S.E., Abdelmoula, R., Keer, L.: A receding contact plane problem between functionally graded layer and a homogeneous substrate. Int. Solid Struct. 43, 658–674 (2006)

    Article  MATH  Google Scholar 

  15. El-Borgi, S., Usman, S., Güler, M.A.: A frictional receding contact plane problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 51(25–26), 4462–4476 (2014)

    Article  Google Scholar 

  16. El-Borgi, S., Çömez, İ: A receding frictional contact problem between a graded layer and a homogeneous substrate presses by a rigid punch. Mech. Mater. 114, 201–214 (2017)

    Article  Google Scholar 

  17. El-Borgi, S., Erdoğan, F., Hidri, L.: A partially insulted embedded crack in an infinite functionally graded medium under thermo-mechanical loading. Int. J. Eng. Sci. 42(3–4), 371–393 (2004)

    Article  Google Scholar 

  18. Elhaskawy, A.: Effect of friction on subsurface stresses in sliding line contact of multilayered elastic solids. Int. J. Solid Struct. 36(26), 3903–3915 (1999)

    Article  MATH  Google Scholar 

  19. Erdoğan, F.: Approximate solution of system of singular integral equations. J. SIAM Appl. Math. 17(6), 1041–1069 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Geçit, M.R.: Fracture of a surface layer bonded to a half space. Int. J. Eng. Sci. 17, 287–295 (1979)

    Article  MATH  Google Scholar 

  21. Griffith, A.: The phenomena of rupture and flow in solids Phil. Trans Roy. Soc. London, Series A 221, 163–199 (1920)

    Google Scholar 

  22. Güler, M.A., Kucuksucu, A., Yilmaz, K.B., Yildirim, B.: On the analytical and finite element solution of plane contact problem of a rigid cylindrical punch sliding over a functionally graded orthotropic medium. Int. J. Mech. Sci. 120, 12–29 (2017)

    Article  Google Scholar 

  23. Hertz, H.:. Gessammelte Worke von Heinrich Hertz, Leipzig (1985).

  24. Hayashi, T., Koguchi, H.: Adhesive contact analysis for anisotropic materials considering surface stress and surface elasticity. Int. J. Solids Struct. 53, 138–147 (2015)

    Article  Google Scholar 

  25. Kadıoğlu, S., Erdoğan, F.: The free-end interface crack problem for bonded orthotropic layers. Int. J. Eng. Sci. 33(8), 1105–1120 (1995)

    Article  MATH  Google Scholar 

  26. Kahya, V., Özşahin, T.Ş, Birinci, A., Erdöl, R.: A receding contact problem for an anisotropic elastic medium consisting of a layer and a half plane. Int. J. Solids Struct. 44(17), 5695–5710 (2007)

    Article  MATH  Google Scholar 

  27. Karabulut, P.M., Adiyaman, G., Birinci, A.: A receding contact problem of a layer resting on a half plane. Struct. Eng. Mech.: Int. J. 64(4), 505–513 (2017)

    Google Scholar 

  28. Karabulut, P. M., & Çömez, İ.: Continuous and discontinuous contact problem of a functionally graded orthotropic layer indented by a rigid cylindrical punch: Analytical and finite element approaches. ZAMM‐J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik, e202200427 (2023)

  29. Kaya, Y., Özşahin, T.Ş. and Polat, A.: Analysis of contact problem of homogeneous plate loaded with three rigid blocks by using finite element method, IV. International Multidisciplinary Congress of Eurasia, Rome, Italy (2018)

  30. Kaya, Y., Polat, A., Özşahin, T.Ş: Analytical and finite element solutions of continuous contact problem in functionally graded layer. Eur. Phys. J. Plus 135, 89 (2020)

    Article  Google Scholar 

  31. Ke, L.L., Wang, Y.S.: Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. Int. J. Solids Struct. 43, 5779–5798 (2006)

    Article  MATH  Google Scholar 

  32. Liu, T.J., Xing, Y.M., Wang, Y.S.: The axisymmetric contact problem of a coating/substrate system with a graded interfacial layer under a rigid spherical punch. Math. Mech. Solids 21(3), 383–399 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ma, L.F., Korsunsky, A.M.: Fundamental formulation for frictional contact Problems of coated systems. Int. J. Solids Struct. 41(11–12), 2837–2854 (2004)

    Article  MATH  Google Scholar 

  34. Oner, E., Yaylaci, M., Birinci, A.: Analytical solution of a contact problem and comparison with the results from FEM. Struct. Eng. Mech.: Int. J. 54(4), 607–622 (2015)

    Article  Google Scholar 

  35. Öner, E.: Two-dimensional frictionless contact analysis of an orthotropic layer under gravity. J. Mech. Mater. Struct. 16(4), 573–594 (2021)

    Article  MathSciNet  Google Scholar 

  36. Öner, E.: Frictionless contact mechanics of an orthotropic coating/isotropic substrate system. Comput. Concr. 28(2), 209 (2021)

    MathSciNet  Google Scholar 

  37. Öner, E., Şengül Şabano, B., Uzun Yaylacı, E., Adıyaman, G., Yaylacı, M., Birinci, A.: On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 102(2), e202100287 (2022)

    Article  MathSciNet  Google Scholar 

  38. Özşahin, T.Ş, Kahya, V., Çakıroğlu, A.O.: Contact problem for an elastic layered composite resting on rigid flat supports. Int. J. Comput. Math. Sci. 1(2), 154–159 (2007)

    MathSciNet  Google Scholar 

  39. Papadopoulos, P., Taylor, R., L.: A mixed formulation for the finite element solution of contact problems. Comput. Methods Appl. Mech. Eng. 94(3), 373–389 (1992)

    Article  MATH  Google Scholar 

  40. Romdhane, M.B., El-Borgi, S., Charfeddine, M.: An embedded crack in a functionally graded orthotropic coating bonded to a homogeneous substrate under a frictional Hertzian contact. Int. J. Solids Struct. 50(24), 3898–3910 (2013)

    Article  Google Scholar 

  41. Rhimi, M., El-Borgi, S., Ben Saïd, W., Ben Jemaa, F.: A receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 46(20), 3633–3642 (2009)

    Article  MATH  Google Scholar 

  42. Sarıkaya, D., Dağ, S.: Surface cracking in an orthotropic medium subjected to frictional contact. Int. J. Solids Struct. 90, 1–11 (2016)

    Article  Google Scholar 

  43. Shield, T.W. and Bogy, D.B.: Multiple region contact solutions for a flat intender on a layered elastic half space: plane strain case. J. Appl. Mech., Trans. ASME, 251–261 (1988)

  44. Talezadehlari, A., Nikbakht, A., Sadighi, M., Zucchelli, A.: Numerical analysis of frictional contact in the precence of a surface crack in a functionally graded coating substrate system. Int. J. Mech. Sci. 117, 286–298 (2016)

    Article  Google Scholar 

  45. Theotokoglou, E.E., Paulino, G.H.: A crack in the homogeneous half plane interacting with a crack at the interface between the nonhomogeneous coating and the homogeneous half-plane. İnt. J. Fract. 134(1), 11–18 (2005)

    Article  MATH  Google Scholar 

  46. Yaylacı, M., Eyüboğlu, A., Adıyaman, G., Yaylacı, E.U., Öner, E., Birinci, A.: Assesment of different solution method for receding contact problems in functionally graded layered mediums. Mech. Mater. 154, 103730 (2021)

    Article  Google Scholar 

  47. Yaylacı, M., Yaylı, M., Yaylacı, E.U., Ölmez, H., Birinci, A.: Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron. Struct. Eng. Mech., An Int’l J. 78(5), 585–597 (2021)

    Google Scholar 

  48. Yaylacı, M., Abanoz, M., Yaylacı, E.U.: Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods. Arch. Appl. Mech. 92, 1953–1971 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Üstün.

Ethics declarations

Conflict of interest

Declaration is a statement to certify that all authors have seen and approved the final version of the manuscript being submitted. They warrant that the article is the authors’ original work, has not received prior publication and is not under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$K_{11} (t,y) = K_{22} (t,y) = - \frac{1}{t + y} + \frac{6y}{{t + y}} - \frac{{4y^{2} }}{{(t + y)^{3} }}$$
(34a)
$$K_{13} (t,y) = K_{14} (t,y) = - \frac{2yt}{{(y + t)^{2} }}$$
(34b)
$$K_{23} (t,y) = K_{24} (t,y) = - \frac{{2y^{2} t}}{{(y^{2} + t^{2} )^{2} }}$$
(34c)
$$K_{31} (t,x) = K_{41} (t,x) = - \frac{{4xt^{2} }}{{(x^{2} + t^{2} )^{2} }}$$
(34d)
$$K_{32} (t,x) = K_{42} (t,x) = \frac{{4x^{3} }}{{(x^{2} + t^{2} )^{2} }}$$
(34e)
$$M_{11} (r_{1} ,s_{1} ) = - \frac{1}{\pi }\frac{e}{2}K_{11} \left( { - \frac{e}{2}r_{1} + \frac{e}{2}, - \frac{e}{2}s_{1} + \frac{e}{2}} \right)$$
(35a)
$$M_{13} (r_{3} ,s_{1} ) = - \frac{1}{\pi }\frac{a - b}{2}K_{13} \left( {\frac{a - b}{2}r_{3} + \frac{b + a}{2}, - \frac{e}{2}s_{1} + \frac{e}{2}} \right)$$
(35b)
$$M_{14} (r_{4} ,s_{1} ) = \frac{1}{\pi }\frac{d - c}{2}K_{14} \left( {\frac{d - c}{2}r_{4} + \frac{d + c}{2}, - \frac{e}{2}s_{1} + \frac{e}{2}} \right)$$
(35c)
$$M_{22} (r_{2} ,s_{2} ) = - \frac{1}{\pi }\frac{e}{2}K_{22} \left( { - \frac{e}{2}r_{2} + \frac{e}{2}, - \frac{e}{2}s_{2} + \frac{e}{2}} \right)$$
(35d)
$$M_{23} (r_{3} ,s_{2} ) = - \frac{1}{\pi }\frac{a - b}{2}K_{23} \left( {\frac{a - b}{2}r_{3} + \frac{b + a}{2}, - \frac{e}{2}s_{2} + \frac{e}{2}} \right)$$
(35e)
$$M_{24} (r_{4} ,s_{2} ) = \frac{1}{\pi }\frac{d - c}{2}K_{24} \left( {\frac{d - c}{2}r_{4} + \frac{d + c}{2}, - \frac{e}{2}s_{2} + \frac{e}{2}} \right)$$
(35f)
$$M_{31} (r_{1} ,s_{3} ) = - \frac{1}{\pi }\frac{e}{2}K_{31} \left[ { - \frac{e}{2}r_{1} + \frac{e}{2},\frac{a - b}{2}s_{3} + \frac{b + a}{2}} \right]$$
(35g)
$$M_{32} (r_{2} ,s_{3} ) = - \frac{1}{\pi }\frac{e}{2}K_{32} \left[ { - \frac{e}{2}r_{2} + \frac{e}{2},\frac{a - b}{2}s_{3} + \frac{b + a}{2}} \right]$$
(35h)
$$M_{41} (r_{1} ,s_{4} ) = - \frac{1}{\pi }\frac{e}{2}K_{41} \left[ { - \frac{e}{2}r_{1} + \frac{e}{2},\frac{d - c}{2}s_{4} + \frac{d + c}{2}} \right]$$
(35i)
$$M_{42} (r_{2} ,s_{4} ) = - \frac{1}{\pi }\frac{e}{2}K_{42} \left[ { - \frac{e}{2}r_{2} + \frac{e}{2},\frac{d - c}{2}s_{4} + \frac{d + c}{2}} \right]$$
(35j)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Üstün, A., Adıyaman, G. & Özşah¡n, T.Ş. Analytical solution for contact and crack problem ın homogeneous half-plane. Arch Appl Mech 93, 4399–4423 (2023). https://doi.org/10.1007/s00419-023-02500-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02500-6

Keywords

Navigation