Skip to main content
Log in

Research on driving force of capsule endoscope in fluid

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The capsule endoscope (CE) is widely used in the inspection of digestive tract diseases. Due to the tortuosity and complexity of the intestinal tract, the CE is difficult to move during the intestinal examination. Therefore, establishing a reliable intestinal model to analyze the stress on the CE is very important. A fluid–structure coupling model of intestinal fluid and intestine was established to simulate the stresses of different shape CEs under a dynamic intestinal fluid environment. We analyzed the flow velocity distribution near the CE and the stress on the intestine in the horizontal and curved intestine environment. The relationship between the stress on the CE and the diameter of the intestine, the viscosity coefficient of the intestinal fluid, the elevation angle of the CE, and the shape of the CE head is studied. The results show that the stress on the head surface of the oval CE in the curved intestine (15.610 Pa) is greater than the stress on the head surface of the round CE (12.157 Pa). This research provides a basis for the design and structural optimization of the CE and provides more evidence for human intestinal examination and surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Azizi Koutenaei, B., Wilson, E., Monfaredi, R., et al.: Robotic natural orifice transluminal endoscopic surgery (R-NOTES): literature review and prototype system. Minim. Invasive Ther. Allied Technol. 24(1), 18–23 (2015)

    Article  Google Scholar 

  2. Leung, W., Foo, D., Chan, T., Chiang, M., Lam, H., Cheung, C.: Alternatives to colonoscopy for population-wide colorectal cancer screening. Hong Kong Med. J. 22(1), 70–77 (2016)

    Article  Google Scholar 

  3. Lomanto, D., Wijerathne, S., Ho, L.K.Y., et al.: Flexible endoscopic robot. Minim. Invasive Ther. Allied Technol. 24(1), 37–44 (2015)

    Article  Google Scholar 

  4. Iddan, G., Meron, G., Glukhovsky, A., et al.: Wireless capsule endoscopy. Nature 405(6785), 417–417 (2000)

    Article  Google Scholar 

  5. Valdastri, P., Webster, R.J., Quaglia, C., et al.: A new mechanism for mesoscale legged locomotion in compliant tubular environments. IEEE Trans. Rob. 25(5), 1047–1057 (2009)

    Article  Google Scholar 

  6. Bo, Y., Zhenjun, S., Yaqi, C., et al.: A new magnetic control method for spiral-type wireless capsule endoscope. J. Mech. Med. Biol. 16(03), 1650031 (2016)

    Article  Google Scholar 

  7. Morita, E., Ohtsuka, N., Shindo, Y., et al.: In vivo trial of a driving system for a self-propelling capsule endoscope using a magnetic field (with video). Gastrointest. Endosc. 72(4), 836–840 (2010)

    Article  Google Scholar 

  8. Mousa, A., Feng, L., Dai, Y., et al.: Self-driving 3-legged crawling prototype capsule robot with orientation controlled by external magnetic field. In: 2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA). IEEE (2018), pp. 243–248

  9. Gao, J.Y., Yan, G.Z., Shi, Y.B., et al.: Optimization design of extensor for improving locomotion efficiency of inchworm-like capsule robot. Sci. China Technol. Sci. 62(11), 1930–1938 (2019)

    Article  Google Scholar 

  10. Son, D., Dong, X., Sitti, M.: A simultaneous calibration method for magnetic robot localization and actuation systems. IEEE Trans. Rob. 35(2), 343–352 (2018)

    Article  Google Scholar 

  11. Kim, S.H., Hashi, S., Ishiyama, K.: Magnetic actuation based snake-like mechanism and locomotion driven by rotating magnetic field. IEEE Trans. Magn. 47(10), 3244–3247 (2011)

    Article  Google Scholar 

  12. Li, J., Barjuei, E.S., Ciuti, G., et al.: Magnetically-driven medical robots: an analytical magnetic model for endoscopic capsules design. J. Magn. Magn. Mater. 452, 278–287 (2018)

    Article  Google Scholar 

  13. Pittiglio, G., Barducci, L., Martin, J.W., et al.: Magnetic levitation for soft-tethered capsule colonoscopy actuated with a single permanent magnet: a dynamic control approach. IEEE Robot. Autom. Lett. 4(2), 1224–1231 (2019)

    Article  Google Scholar 

  14. Terry, B.S., Schoen, J.A., Rentschler, M.E.: Characterization and experimental results of a novel sensor for measuring the contact force from myenteric contractions. IEEE Trans. Biomed. Eng. 59(7), 1971–1977 (2012)

    Article  Google Scholar 

  15. Francisco, M.M., Terry, B.S., Schoen, J.A., et al.: Intestinal manometry force sensor for robotic capsule endoscopy: an acute, multipatient in vivo animal and human study. IEEE Trans. Biomed. Eng. 63(5), 943–951 (2015)

    Article  Google Scholar 

  16. Di Natali, C., Beccani, M., Obstein, K.L., et al.: A wireless platform for in vivo measurement of resistance properties of the gastrointestinal tract. Physiol. Meas. 35(7), 1197 (2014)

    Article  Google Scholar 

  17. Li, P., Kreikemeier-Bower, C., Xie, W., et al.: Design of a wireless medical capsule for measuring the contact pressure between a capsule and the small intestine. J. Biomech Eng (2017) 139(5)

  18. Kim, J.S., Sung, I.H., Kim, Y.T., et al.: Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine. Proc. Inst. Mech. Eng. 221(8), 837–845 (2007)

    Article  Google Scholar 

  19. Mahmood, S., Schurr, M. O., Schostek, S.: Predictive tilt compensation for robot assisted magnetic capsule endoscope[C]. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 3697–3702.

  20. Zhou, H., Alici, G., Than, T.D., et al.: Modeling and experimental characterization of propulsion of a spiral-type microrobot for medical use in gastrointestinal tract. IEEE Trans. Biomed. Eng. 60(6), 1751–1759 (2012)

    Article  Google Scholar 

  21. Ye, B., Zhong, Z., Zhang, W., et al.: Research on coaxial control of magnetic spiral-type capsule endoscope. IEEE Access 8, 108113–108120 (2020)

    Article  Google Scholar 

  22. Taddese, A.Z., Slawinski, P.R., Pirotta, M., et al.: Enhanced real-time pose estimation for closed-loop robotic manipulation of magnetically actuated capsule endoscopes. Int. J. Robot. Res. 37(8), 890–911 (2018)

    Article  Google Scholar 

  23. Puhua, T., Liang, L., Yanghui, X.: Measurement and simulation of fluid flow field in the pipe of magnetic capsule robot. Adv. Mech. Eng. 12(12), 1687814020985953 (2020)

    Article  Google Scholar 

  24. Liu, P., Yu, H., Cang, S.: On the dynamics of a vibro-driven capsule system. Arch. Appl. Mech. 88, 2199–2219 (2018)

    Article  Google Scholar 

  25. Liang, L., Chen, B., Tang, Y., et al.: Operational performance analysis of spiral capsule robot in multiphase fluid. Robotica 37(2), 213–232 (2019)

    Article  Google Scholar 

  26. Song, H.J., et al.: Guidelines for bowel preparation before video capsule endoscopy. Clin. Endosc. 46,2, 147–154 (2013). https://doi.org/10.5946/ce.2013.46.2.147

    Article  Google Scholar 

  27. Chaubal, A., Pandey, V., Patel, R., Poddar, P., Phadke, A., Ingle, M., et al.: Difficult colonoscopy: Air, carbon dioxide, or water insufflation? Intest Res. 16(2), 299–305 (2018)

    Article  Google Scholar 

  28. Radaelli, F., Paggi, S., Amato, A., Terruzzi, V.: Warm water infusion versus air insufflation for unsedated colonoscopy: a randomized, controlled trial. Gastrointest. Endosc. 72(4), 701–709 (2010)

    Article  Google Scholar 

  29. Pioletti, D.P., Rakotomanana, L.R.: Non-linear viscoelastic laws for soft biological tissues. Eur. J. Mech.-A/Solids 19(5), 749–759 (2000)

    Article  MATH  Google Scholar 

  30. Gregersen, H., Kassab, G.: Biomechanics of the gastrointestinal tract. Neurogastroenterol. Motil. 8(4), 277–297 (1996)

    Article  Google Scholar 

  31. Kim, J.S., Sung, I.H., Kim, Y.T., et al.: Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application. Tribol. Lett. 22(2), 143–149 (2006)

    Article  Google Scholar 

  32. Lai, S.K., Wang, Y.Y., Wirtz, D., et al.: Micro-and macrorheology of mucus. Adv. Drug Deliv. Rev. 61(2), 86–100 (2009)

    Article  Google Scholar 

  33. Barducci, L., Norton, J.C., Sarker, S., et al.: Fundamentals of the gut for capsule engineers. Progress Biomed. Eng. 2(4), 042002 (2020)

    Article  Google Scholar 

  34. Yan, Y., Guo, B., Tian, J., et al.: Evaluating the resistant force of an endoscopic capsule self-propelling in the small intestine. Arch. Appl. Mech. 92(12), 3861–3875 (2022)

    Article  Google Scholar 

  35. Jinhua, L., Shuqing, W., Danyang, L.: Investigation of miniature robot-induced injury in intestinal tract. World Chin. J. Dig. 06, 618–620 (2006). ((in Chinese))

    Google Scholar 

Download references

Funding

This work was supported by the Key Research Program of the Chinese Academy of Sciences, Grant No. ZDRW-CN-2021–3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Z., Liu, J., Sun, H. et al. Research on driving force of capsule endoscope in fluid. Arch Appl Mech 93, 4387–4398 (2023). https://doi.org/10.1007/s00419-023-02499-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02499-w

Keywords

Navigation