Skip to main content
Log in

Nonlinear chatter of CNTs-reinforced composite boring cutter considering unstable region

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The nonlinear dynamic analysis of rotating composite boring round bar containing carbon nanotubes (CNTs) in boring system is investigated. Firstly, according to both the Halpin–Tsai model and the micro-mechanical theory, the resultant properties of filled-CNT composite material are estimated. Subsequently, the equations in terms of the energies and virtual works for the composite boring bar are derived by taking into the Von Kármán geometric nonlinearity account. Then, the extended Hamilton principle is used to establish the nonlinear dynamic model of the machining system, which includes periodic regenerative chatter cutting force, periodic frictional force, viscoelastic and process damping force. Both methods of Galerkin approximation and multiple time scales for nonlinear equation are utilized to obtain steady-state response of the boring process. The stability of the boring system is explored considering the effects of CNT-related parameters, fiber volume fraction and orientations, stacking sequences, damping coefficient, and cutter geometry features. The results obtained demonstrate that the CNTs inclusion has a considerable effect on the dynamic behavior of the boring process. Furthermore, it is also concluded that the unstable area can be reduced by increasing damping and that the stability of boring process will be enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lawal, S.A., Ndaliman, M.B., Bala, K.C., Lawal, S.S.: Effect of cutting variables on boring process: a review. In: Hashmi, M. (ed.) Comprehensive Materials Finishing, pp. 26–46. Elsevier, Oxford (2017). https://doi.org/10.1016/B978-0-12-803581-8.09148-7

    Chapter  Google Scholar 

  2. Yan, Y., Xu, J., Wiercigroch, M.: Modelling of regenerative and frictional cutting dynamics. Int. J. Mech. Sci. 156(3), 86–93 (2019). https://doi.org/10.1016/j.ijmecsci.2019.03.032

    Article  Google Scholar 

  3. Tlusty, J.: Machine Dynamics. Manufacturing processes and equipment. Prentice Hall, New York (2002). https://doi.org/10.1023/A:1014528411283

  4. Muhammad, B.B., Wan, M., Feng, J., Zhang, W.: Dynamic damping of machining vibration: a review. Int. J. Adv. Manuf. Technol. 89(9–12), 2935–2952 (2017). https://doi.org/10.1007/s00170-016-9862-z

    Article  Google Scholar 

  5. Tarng, Y.S., Kao, J.Y., Lee, E.C.: Chatter suppression in turning operations with a tuned vibration absorber. J. Mater. Process Technol. 105(1), 55–60 (2000). https://doi.org/10.1016/S0924-0136(00)00585-9

    Article  Google Scholar 

  6. Ema, S., Marui, E.: Suppression of chatter vibration of boring tools using impact dampers. Int. J. Mach. Tools Manuf. 40(8), 1141–1156 (2000). https://doi.org/10.1016/S0890-6955(99)00119-4

    Article  Google Scholar 

  7. Lee, E.C., Nian, C.Y., Tarng, Y.S.: Design of a dynamic vibration absorber against vibrations in turning operations. J. Mater. Process Technol. 108(3), 278–285 (2001). https://doi.org/10.1016/S0924-0136(00)00836-0

    Article  Google Scholar 

  8. Biswas, D., Ray, M.C.: Active constrained layer damping of geometrically nonlinear vibration of rotating composite beams using 1–3 piezoelectric composite. Int. J. Mech. Mater. Des. 9(1), 83–104 (2013). https://doi.org/10.1007/s10999-012-9207-5

    Article  Google Scholar 

  9. Kumar, S., Kumar, R.: Theoretical and experimental vibration analysis of rotating beams with combined ACLD and stressed layer damping treatment. Appl. Acoust. 74(5), 675–693 (2013). https://doi.org/10.1016/j.apacoust.2012.11.002

    Article  Google Scholar 

  10. Ro, J., Baz, A.M.: Vibration control of plates using self-sensing active constrained layer damping. pp. 200–209 (1999). https://doi.org/10.1117/12.349783

  11. Bekyarova, E., Thostenson, E.T., Yu, A., Kim, H., Gao, J., Tang, J., et al.: Multiscale carbon nanotube−carbon fiber reinforcement for advanced epoxy composites. Langmuir 23(7), 3970–3974 (2007). https://doi.org/10.1021/la062743p

    Article  Google Scholar 

  12. Green, K.J., Dean, D.R., Vaidya, U.K., Nyairo, E.: Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Compos. Part A App. Sci. Manuf. 40(9), 1470–1475 (2009). https://doi.org/10.1016/j.compositesa.2009.05.010

    Article  Google Scholar 

  13. Hu, Z.Y., Zhou, C., Zheng, X.R., Ni, Z.F., Li, R.: Free vibration of non-lévy-type functionally graded doubly curved shallow shells: new analytic solutions. Compos. Struct. 304(116389), 1–13 (2023). https://doi.org/10.1016/j.compstruct.2022.116389

    Article  Google Scholar 

  14. Hu, Z.Y., Shi, Y.Q., Xiong, S.J., Zheng, X.R., Li, R.: New analytic free vibration solutions of non-lévy-type porous FGM rectangular plates within the symplectic framework. Thin Wall Struct. 185(110609), 1–21 (2023). https://doi.org/10.1016/j.tws.2023.110609

    Article  Google Scholar 

  15. Lee, D.G., Suh, N.P.: Manufacturing and testing of chatter free boring bars. CIRP Ann. Manuf. Technol. 37(1), 36–368 (1988). https://doi.org/10.1016/S0007-8506(07)61655-2

    Article  Google Scholar 

  16. Lee, D.G., Hwang, H.Y., Kim, J.K.: Design and manufacture of a carbon fiber epoxy rotating boring bar. Compos. Struct. 60(1), 115–124 (2003). https://doi.org/10.1016/S0263-8223(02)00287-8

    Article  Google Scholar 

  17. He, X.Q., Rafiee, M., Mareishi, S., Liew, K.M.: Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams. Compos. Struct. 131, 1111–1123 (2015). https://doi.org/10.1016/j.compstruct.2015.06.038

    Article  Google Scholar 

  18. Hu, Z., Zhou, C., Ni, Z., Lin, X., Li, R.: New symplectic analytic solutions for buckling of CNT reinforced composite rectangular plates. Compos. Struct. 303(116361), 1–15 (2023). https://doi.org/10.1016/j.compstruct.2022.116361

    Article  Google Scholar 

  19. Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S.V., van Vuure, A.W., et al.: Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon 47(12), 2914–2923 (2009). https://doi.org/10.1016/j.carbon.2009.06.039

    Article  Google Scholar 

  20. Kim, M., Park, Y., Okoli, O.I., Zhang, C.: Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos. Sci. Technol. 69(3–4), 335–342 (2009). https://doi.org/10.1016/j.compscitech.2008.10.019

    Article  Google Scholar 

  21. Hanna, N.H., Tobias, S.A.: Theory of nonlinear regenerative chatter. J. Eng. Ind. 96(1), 247–255 (1974). https://doi.org/10.1115/1.3438305

    Article  Google Scholar 

  22. Deshpande, N., Fofana, M.S.: Nonlinear regenerative chatter in turning. Robot Comput. Integr. Manuf. 17(1), 107–112 (2001). https://doi.org/10.1016/S0736-5845(00)00043-0

    Article  Google Scholar 

  23. Moradi, H., Vossoughi, G., Movahhedy, M.R., Ahmadian, M.T.: Forced vibration analysis of the milling process with structural nonlinearity, internal resonance, tool wear and process damping effects. Int. J. Nonlin. Mech. 54, 22–34 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.02.005

    Article  Google Scholar 

  24. Stepan, G., Insperger, T., Szalai, R.: Delay parametric excitation and the nonlinear dynamics of cutting processes. Int. J. Bifurcat. Chaos. 15(9), 2783–2798 (2005). https://doi.org/10.1142/S0218127405013642

    Article  MathSciNet  MATH  Google Scholar 

  25. Jalili, M.M., Hesabi, J., Abootorabi, M.M.: Simulation of forced vibration in milling process considering gyroscopic moment and rotary inertia. Int. J. Adv. Manuf. Technol. 89(9–12), 2821–2836 (2017). https://doi.org/10.1007/s00170-016-9618-9

    Article  Google Scholar 

  26. Vela-Martínez, L., Jáuregui-Correa, J.C., González-Brambila, O.M., Herrera-Ruiz, G., Lozano-Guzmán, A.: Instability conditions due to structural nonlinearities in regenerative chatter. Nonlinear Dyn. 56(4), 415–427 (2009). https://doi.org/10.1007/s11071-008-9411-x

    Article  MATH  Google Scholar 

  27. Mohammadi, Y., Ahmadi, K.: Finite-amplitude stability in regenerative chatter: The effect of process damping nonlinearity and intermittent cutting in turning. J. Sound Vib. 537(117158), 1–13 (2022). https://doi.org/10.1016/j.jsv.2022.117158

    Article  Google Scholar 

  28. Stepan, G., Beri, B., Miklos, A., Wohlfart, R., Bachrathy, D., Porempovics, G., Toth, A., Takacs, D.: On stability of emulated turning processes in HIL environment. CIRP. Ann. Manuf. Techn. 68(1), 405–408 (2019). https://doi.org/10.1016/j.cirp.2019.04.035

    Article  Google Scholar 

  29. Bukhari, M., Barry, O.: Exact nonlinear dynamic analysis of a beam with a nonlinear vibration absorber and with various boundary conditions. Int. J. Nonlin. Mech. 15(1), 011003 (2020). https://doi.org/10.1115/1.4045287

    Article  Google Scholar 

  30. Ebrahimi, F., Dabbagh, A.: Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin–Tsai homogenization model. Compos. B Eng. 173(106955), 1–13 (2019). https://doi.org/10.1016/j.compositesb.2019.106955

    Article  Google Scholar 

  31. Rafiee, M., He, X.Q., Mareishi, S., Liew, K.M.: Modeling and stress analysis of smart CNTs/fiber/polymer multiscale composite plates. Int. J. Appl. Mech. 06(03), 1450025 (2014). https://doi.org/10.1142/S1758825114500252

    Article  Google Scholar 

  32. Rafiee, M., Liu, X.F., He, X.Q., Kitipornchai, S.: Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates. J. Sound Vib. 333(14), 3236–3251 (2014). https://doi.org/10.1016/j.jsv.2014.02.033

    Article  Google Scholar 

  33. Hosseini, S.M., Mareishi, S., Kalhori, H., Rafiee, M.: Large amplitude free and forced oscillations of functionally graded beams. Mech. Adv. Mater. Struc. 21(4), 255–262 (2014). https://doi.org/10.1080/15376494.2012.680670

    Article  Google Scholar 

  34. Mareishi, S., Kalhori, H., Rafiee, M., Hosseini, S.M.: Nonlinear forced vibration response of smart two-phase nano-composite beams to external harmonic excitations. Curved Layer Struct. 2(1), 150–161 (2015). https://doi.org/10.1515/cls-2015-0008

    Article  Google Scholar 

  35. Ben Arab, S., Rodrigues, J.D., Bouaziz, S., Haddar, M.: Stability analysis of internally damped rotating composite shafts using a finite element formulation. CR Mécanique 346(4), 291–307 (2018). https://doi.org/10.1016/j.crme.2018.01.002

    Article  Google Scholar 

  36. Tuysuz, O., Altintas, Y.: Analytical modeling of process damping in machining. J. Manuf. Sci. Eng. 141(6), 1–16 (2019). https://doi.org/10.1115/1.4043310

    Article  Google Scholar 

  37. Zhang, Y.H., Ren, Y.S., Zhang, J.F.: Stability analysis of cutting process with internally damped rotating tapered composite cutter bar. Math. Probl. Eng. 2020, 1–23 (2020). https://doi.org/10.1155/2020/2587820

    Article  MathSciNet  MATH  Google Scholar 

  38. Rafiee, M., He, X.Q., Liew, K.M.: Nonlinear analysis of piezoelectric nanocomposite energy harvesting plates. Smart Mater. Struct. 23(6), 1–13 (2014). https://doi.org/10.1088/0964-1726/23/6/065001

    Article  Google Scholar 

  39. Altintaş, Y., Budak, E.: Analytical prediction of stability lobes in milling. CIRP. Ann. Manuf. Techn. 44(1), 357–362 (1995). https://doi.org/10.1016/S0007-8506(07)62342-7

    Article  Google Scholar 

  40. Yao, D.H., Ren, Y.S., Zhang, Y.H., Ma, B.L.: Nonlinear dynamics of cutting process considering higher-order deformation of composite cutting tool. Shock Vib. 2021, 1–23 (2021). https://doi.org/10.1155/2021/8699218

    Article  Google Scholar 

  41. Ma, B.L., Ren, Y.S.: Nonlinear dynamic analysis of the cutting process of a nonextensible composite boring bar. Shock Vib. 2020, 1–13 (2020). https://doi.org/10.1155/2020/5971540

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11672166) and the Natural Science Foundation of Shandong Province (Grant no. ZR202103070107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinfeng Zhang or Chao Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The transformed material constants of the kth layer of the composite boring bar are defined as,

$$\overline{Q}_{11} = Q_{11} \cos^{4} \theta^{(k)} + 2(Q_{12} + 2Q_{66} )\cos^{2} \theta^{(k)} \sin^{2} \theta^{(k)} + Q_{22} \sin^{4} \theta^{(k)}$$
(57)

where θ(k) is the layered angle of each layer of material.

The expression for Q11, Q1, Q22, Q66 is as follows,

$$Q_{11} = \frac{{E_{11} }}{{1 - \nu_{12} \nu_{21} }},\quad Q_{22} = \frac{{E_{22} }}{{1 - \nu_{12} \nu_{21} }}\quad Q_{12} = \frac{{\nu_{21} E_{11} }}{{1 - \nu_{12} \nu_{21} }},\quad Q_{66} = G_{12}$$
(58)

where \(\nu_{21} = \frac{{\nu_{12} E_{22} }}{{E_{11} }}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, Z., Feng, C. et al. Nonlinear chatter of CNTs-reinforced composite boring cutter considering unstable region. Arch Appl Mech 93, 4217–4239 (2023). https://doi.org/10.1007/s00419-023-02490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02490-5

Keywords

Navigation