Skip to main content
Log in

Compliant assembly variation analysis of composite structures using the Monte Carlo method with consideration of stress-stiffening effects

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The application of an interference fit in the assembly process of thin-walled aerospace composite parts is prone to stress stiffness effects, namely the structural stiffness change caused by the inplate-induced stress. Limited applicability has been available in this regard when using the compliant assembly analysis based on the stiffness-invariant assumption, such as the method of influence coefficient. In addition, these materials possess a hierarchical structure that necessitates the use of material uncertainty in the analysis. However, it is costly and complicated to develop uncertainty analysis and modeling calculations at different scales. In this study, a deviation propagation model of the composite structure (DPMoCS) considering the stress-stiffening effect is proposed to improve the analysis efficiency. Based on the geometric nonlinear theory, the factors of interest affecting the stress-stiffening effect in the interference assembly of a thin-walled composite material are investigated, which are the material elastic and stress field. Our simulations are integrated with material uncertainty quantization and propagation across scales to characterize the uncertainty of the factors of interest as well as reduce the computational cost based on the equivalent model. The method is combined with the Monte Carlo-based stochastic finite element method and applied to the assembly analysis of a composite panel subassembly. The results show that consideration of the stress-hardening effect has a significant effect on the DPMoCS and affects the assembly accuracy as the fiber layup angle deviation increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or mentioned during this study are included in this published article.

Code availability

No code was provided in this manuscript.

References

  1. Wu, J., Chen, C., Ouyang, Y., et al.: Recent development of the novel riveting processes. Int. J. Adv. Manuf. Technol. 117, 19–47 (2021). https://doi.org/10.1007/s00170-021-07689-w

    Article  Google Scholar 

  2. Scalea, F.L.D., Cloud, G.L., Cappello, F.: A study on the effects of clearance and interference fits in a pin-loaded cross-ply FGRP laminate. J. Compos. Mater. 32, 783–802 (1998). https://doi.org/10.1177/002199839803200805

    Article  Google Scholar 

  3. Raju, K.P., Bodjona, K., Lim, G.H., et al.: Improving load sharing in hybrid bonded/bolted composite joints using an interference-fit bolt. Compos. Struct. 149, 329–338 (2016). https://doi.org/10.1016/j.compstruct.2016.04.025

    Article  Google Scholar 

  4. Hübel, H., Vollrath, B.: Effect of stress stiffness on elastic-plastic strain range. Int. J. Press. Vessels Pip. 192, 104421–104421 (2021). https://doi.org/10.1016/j.ijpvp.2021.104421

    Article  Google Scholar 

  5. Lindau, B., Lorin, S., Lindkvist, L., et al.: Efficient contact modeling in nonrigid variation simulation. J. Comput. Inf. Sci. Eng. 16, 21–27 (2016). https://doi.org/10.1115/1.4032077

    Article  Google Scholar 

  6. Liu, X., An, L., Wang, Z., et al.: Assembly variation analysis of aircraft panels under part-to-part locating scheme. Int. J. Aerosp. Eng. 2019, 1–15 (2019)

    Article  Google Scholar 

  7. Liu, S.C., Hu, S.J.: Variation simulation for deformable sheet metal assemblies using finite element methods. J. Manuf. Sci. Eng. 119, 368–374 (1997). https://doi.org/10.1115/1.2831115

    Article  Google Scholar 

  8. Mortensen, A.J.: An integrated methodology for statistical tolerance analysis of flexible assemblies. Dissertation, Brigham Young University (2002)

  9. Polini, W., Corrado, A.: Methods of influence coefficients to evaluate stress and deviation distribution of flexible assemblies—a review. Int. J. Adv. Manuf. Technol. 107, 2901–2915 (2020). https://doi.org/10.1007/s00170-020-05210-3

    Article  Google Scholar 

  10. Marinković, D., Zehn, M.: Consideration of stress stiffening and material reorientation in modal space based finite element solutions. Phys. Mesomech. 21, 341–350 (2018). https://doi.org/10.1134/S1029959918040082

    Article  Google Scholar 

  11. Dong, C., Kang, L.: Deformation and stress of a composite–metal assembly. Int. J. Adv. Manuf. Technol. 61, 1035–1042 (2012). https://doi.org/10.1007/s00170-011-3757-9

    Article  Google Scholar 

  12. Shinozuka, M., Deodatis, G.: Response variability of stochastic finite element systems. J. Eng. Mech. 114, 499–519 (1988). https://doi.org/10.1061/(ASCE)0733-9399(1988)114:3(499)

    Article  Google Scholar 

  13. Söderberg, R., Wärmefjord, K., Lindkvist, L.: Variation simulation of stress during assembly of composite parts. CIRP Ann. 64, 17–20 (2015). https://doi.org/10.1016/j.cirp.2015.04.048

    Article  Google Scholar 

  14. Merkley, K.: Tolerance analysis of compliant assemblies. Dissertations, Brigham Young University (1998)

  15. Chen, H., Tan, C., Wang, Z.: Statistical variation analysis of compliant assembly coupling geometrical and material error. Acta Aeronaut. Astronaut. Sin. 12, 421–423 (2015). https://doi.org/10.7527/S1000-6893.2014.0306

    Article  Google Scholar 

  16. Rafiee, R., Fakoor, M., Hesamsadat, H.: The influence of production inconsistencies on the functional failure of GRP pipes. Steel Compos. Struct. 19, 1369–1379 (2015). https://doi.org/10.12989/scs.2015.19.6.1369

    Article  Google Scholar 

  17. Rafiee, R., Shahzadi, R.: Predicting mechanical properties of nanoclay/polymer composites using stochastic approach. Compos. B Eng. 152, 31–42 (2018). https://doi.org/10.1016/j.compositesb.2018.06.033

    Article  Google Scholar 

  18. Rafiee, R., Ghorbanhosseini, A.: Stochastic multi-scale modeling of randomly grown CNTs on carbon fiber. Mech. Mater. 106, 1–7 (2017). https://doi.org/10.1016/j.mechmat.2017.01.001

    Article  Google Scholar 

  19. Liu, W.K., Siad, L., Tian, R., et al.: Complexity science of multiscale materials via stochastic computations. Int. J. Numer. Methods Eng. 80, 932–978 (2009). https://doi.org/10.1002/nme.2578

    Article  MATH  Google Scholar 

  20. Chernatynskiy, A., Phillpot, S.R., LeSar, R.: Uncertainty quantification in multiscale simulation of materials: a prospective. Annu. Rev. Mater. Res. 43, 157–182 (2013). https://doi.org/10.1146/annurev-matsci-071312-121708

    Article  Google Scholar 

  21. Matouš, K., Geers, M.G., Kouznetsova, V.G., et al.: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J. Comput. Phys. 330, 192–220 (2017). https://doi.org/10.1016/j.jcp.2016.10.070

    Article  MathSciNet  Google Scholar 

  22. Greene, M.S., Liu, Y., Chen, W., et al.: Computational uncertainty analysis in multiresolution materials via stochastic constitutive theory. Comput. Methods Appl. Mech. Eng. 200, 309–325 (2011). https://doi.org/10.1016/j.cma.2010.08.013

    Article  MathSciNet  MATH  Google Scholar 

  23. Savvas, D., Stefanou, G.: Assessment of the effect of microstructural uncertainty on the macroscopic properties of random composite materials. J. Compos. Mater. 51, 2707–2725 (2017). https://doi.org/10.1177/0021998316677333

    Article  Google Scholar 

  24. Chin, W.-K., Liu, H.-T., Lee, Y.-D.: Effects of fiber length and orientation distribution on the elastic modulus of short fiber reinforced thermoplastics. Polym. Compos. 9, 27–35 (1988). https://doi.org/10.1002/pc.750090105

    Article  Google Scholar 

  25. Akmar, A.I., Lahmer, T., Bordas, S.P.A., et al.: Uncertainty quantification of dry woven fabrics: a sensitivity analysis on material properties. Compos. Struct. 116, 1–17 (2014). https://doi.org/10.1016/j.compstruct.2014.04.014

    Article  Google Scholar 

  26. Sriramula, S., Chryssanthopoulos, M.K.: Quantification of uncertainty modelling in stochastic analysis of FRP composites. Compos. A Appl. Sci. Manuf. 40, 1673–1684 (2009). https://doi.org/10.1016/j.compositesa.2009.08.020

    Article  Google Scholar 

  27. Rafiee, R., Sahraei, M.: Characterizing delamination toughness of laminated composites containing carbon nanotubes: experimental study and stochastic multi-scale modeling. Compos. Sci. Technol. 201, 108487 (2021). https://doi.org/10.1016/j.compscitech.2020.108487

    Article  Google Scholar 

  28. Rafiee, R., Zehtabzadeh, H.: Predicting the strength of carbon nanotube reinforced polymers using stochastic bottom-up modeling. Appl. Phys. A 126, 595 (2020). https://doi.org/10.1007/s00339-020-03784-z

    Article  Google Scholar 

  29. Rafiee, R., Eskandariyun, A.: Estimating Young’s modulus of graphene/polymer composites using stochastic multi-scale modeling. Compos. Part B Eng. 173, 106842 (2019). https://doi.org/10.1016/j.compositesb.2019.05.053

    Article  Google Scholar 

  30. Rafiee, R., Firouzbakht, V.: Multi-scale modeling of carbon nanotube reinforced polymers using irregular tessellation technique. Mech. Mater. 78, 74–84 (2014). https://doi.org/10.1016/j.mechmat.2014.07.021

    Article  Google Scholar 

  31. Rafiee, R., Reshadi, F., Eidi, S.: Stochastic analysis of functional failure pressures in glass fiber reinforced polyester pipes. Mater. Des. 67, 422–427 (2015). https://doi.org/10.1016/j.matdes.2014.12.003

    Article  Google Scholar 

  32. Rafiee, R.: Apparent hoop tensile strength prediction of glass fiber-reinforced polyester pipes. J. Compos. Mater. 47, 1377–1386 (2013). https://doi.org/10.1177/0021998312447209

    Article  Google Scholar 

  33. Corrado, A., Polini, W.: Analysis of process-induced deformation on the spring-in of carbon fiber-reinforced polymer thin laminates. J. Compos. Mater. 53, 2901–2907 (2019). https://doi.org/10.1177/0021998319828443

    Article  Google Scholar 

  34. Jareteg, C., Wärmefjord, K., Söderberg, R., et al.: Variation simulation for composite parts and assemblies including variation in fiber orientation and thickness. Procedia CIRP 23, 235–240 (2014). https://doi.org/10.1016/j.procir.2014.10.069

    Article  Google Scholar 

  35. Vashakmadze, T.S.: The theory of anisotropic elastic plates. Springer, Berlin (2013)

    Google Scholar 

  36. Zinoviev, P.A., Grigoriev, S.V., Lebedeva, O.V., et al.: The strength of multilayered composites under a plane-stress state. Compos. Sci. Technol. 58, 1209–1223 (1998). https://doi.org/10.1016/S0266-3538(97)00191-7

    Article  Google Scholar 

  37. Chang, Z., Wang, Z., Jiang, B., et al.: Modeling and predicting of aeronautical thin-walled sheet metal parts riveting deformation. Assem. Autom. 58, 1209–1223 (2016). https://doi.org/10.1016/S0266-3538(97)00191-7

    Article  Google Scholar 

  38. Lin, J., Jin, S., Zheng, C., et al.: Compliant assembly variation analysis of aeronautical panels using unified substructures with consideration of identical parts. Comput. Aided Des. 57, 29–40 (2014). https://doi.org/10.1016/j.cad.2014.07.003

    Article  Google Scholar 

  39. Liu, S.: Variation simulation for deformable sheet metal assembly. Dissertation, University of Michigan (1995)

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The theoretical method is proposed by XT and JY. XT, JZ and DX carried out the secondary development and analysis of the finite element analysis process. The first draft of the manuscript was written by XT, YL and HZ. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianfeng Yu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

All authors read and approved the final manuscript.

Consent for publication

All authors agree to publish in The International Journal of Advanced Manufacturing Technology.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Yu, J., Zhang, H. et al. Compliant assembly variation analysis of composite structures using the Monte Carlo method with consideration of stress-stiffening effects. Arch Appl Mech 93, 4065–4080 (2023). https://doi.org/10.1007/s00419-023-02479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02479-0

Keywords

Navigation