Skip to main content
Log in

Bending analysis of functionally graded sandwich beams with general boundary conditions using a modified Fourier series method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

A Correction to this article was published on 09 August 2023

This article has been updated

Abstract

A modified Fourier method and six-parameter constrained model are employed to investigate the static bending characteristics of functionally graded sandwich beams under classical and non-classical boundary conditions based on the first-order shear deformation theory. Three types of sandwich beams including isotropic hardcore, functionally graded core, and isotropic softcore are considered. The effective material properties of functionally graded materials are assumed to vary according to power law distribution of volume fraction of constituents by Voigt model. The governing equations and boundary conditions are derived from the principle of minimum potential energy and are solved using the modified Fourier series method which includes the standard Fourier cosine series together with two auxiliary polynomials terms. The high convergence rate, availability and accuracy of the formulation are verified by comparisons with results of other methods. Moreover, numerous new bending results for functionally graded sandwich beams with general boundary conditions are presented. The significant effects of various boundary conditions, different types of sandwich beams, power-law index, span-to-height ratio and skin–core-skin thickness ratio on the displacements, axial stresses, and shear stresses of the sandwich beams with symmetrical and unsymmetrical forms are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available upon reasonable demand.

Change history

References

  1. Sayyad, A.S., Ghugal, Y.M.: Modeling and analysis of functionally graded sandwich beams: A review. Mech Adv Mater Struc. 142, 1–20 (2018)

    Google Scholar 

  2. Garg, A., Chalak, H.D.: A review on analysis of laminated composite and sandwich structures under hygrothermal conditions. Thin Wall Struct. 142, 205–226 (2019)

    Article  Google Scholar 

  3. Garg, A., et al.: A review of the analysis of sandwich FGM structures. Compos. Struct. 258, 1–13 (2021)

    Article  Google Scholar 

  4. Sankar, B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61(5), 689–696 (2001)

    Article  Google Scholar 

  5. Li, S.R., Zhang, J.H., Zhao, Y.G.: Thermal post-buckling of functionally graded material Timoshenko beams. Appl. Math. Mech. 27, 803–810 (2006)

    Article  MATH  Google Scholar 

  6. Li, X.F.: A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams. J. Sound Vib. 318, 1210–1229 (2008)

    Article  Google Scholar 

  7. Sina, S.A., Navazi, H.M., Haddadpour, H.: An analytical method for free vibration analysis of functionally graded beams. Mater. Des. 30, 741–747 (2009)

    Article  Google Scholar 

  8. Simsek, M.: Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl. Eng. Des. 240(4), 697–705 (2010)

    Article  Google Scholar 

  9. Ma, L.S., Lee, D.W.: A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading. Compos. Struct. 93, 831–842 (2011)

    Article  Google Scholar 

  10. Thai, H.T., Vo, T.P.: Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. Int. J. Mech. Sci. 62, 57–66 (2012)

    Article  Google Scholar 

  11. Li, S.R., Batra, R.C.: Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams. Compos. Struct. 95, 5–9 (2013)

    Article  Google Scholar 

  12. Wattanasakulpong, N., Ungbhakorn, V.: Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Sci. Technol. 32, 111–120 (2014)

    Article  Google Scholar 

  13. Chen, D., Yang, J., Kitipornchai, S.: Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 133, 54–61 (2015)

    Article  Google Scholar 

  14. Chen, D., Yang, J., Kitipornchai, S.: Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108, 14–22 (2016)

    Article  Google Scholar 

  15. She, G.L., Yuan, F.G., Ren, Y.R.: Nonlinear analysis of bending, thermal buckling and post-buckling for functionally graded tubes by using a refined beam theory. Compos. Struct. 165(1), 74–82 (2017)

    Article  Google Scholar 

  16. Tang, H., Li, L., Hu, Y.: Buckling analysis of two-directionally porous beam. Aerospace Sci. Technol. 78, 471–479 (2018)

    Article  Google Scholar 

  17. Masjedi, P.K., Maheri, A., Weaver, P.M.: Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation. Appl. Math. Model. 76, 938–957 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xie, K., Wang, Y.W., Fan, X.H., et al.: Nonlinear free vibration analysis of functionally graded beams by using different shear deformation theories. Appl. Math. Model. 77, 1860–1880 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Belarbi, M.-O., et al.: Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory. Compos. Struct. 264, 113712 (2021)

    Article  Google Scholar 

  20. Turan, M.: Bending analysis of two-directional functionally graded beams using trigonometric series functions. Arch. Appl. Mech. 92, 1841–1858 (2022)

    Article  Google Scholar 

  21. Eiadtrong, S., Wattanasakulpong, N., Vo, T.P.: Thermal vibration of functionally graded porous beams with classical and non-classical boundary conditions using a modified Fourier method. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00707-022-03401-5

    Article  Google Scholar 

  22. Turan, M., Adiyaman, G.: A new higher-order finite element for static analysis of two-directional functionally graded porous beams. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-07742-8

    Article  Google Scholar 

  23. Turan, M., Yaylacı, E.U., Yaylacı, M.: Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods. Arch. Appl. Mech. 93, 1351–1372 (2023)

    Article  Google Scholar 

  24. Sekkal, M., Bachir Bouiadjra, R., Benyoucef, S., et al.: Investigation on static stability of bidirectional FG porous beams exposed to variable axial load. Acta Mech. 234, 1239–1257 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  25. Turan, M., Adiyaman, G.: Free vibration and buckling analysis of porous two-directional functionally graded beams using a higher-order finite element model. J. Vib. Eng. Technol. (2023). https://doi.org/10.1007/s42417-023-00898-5

    Article  Google Scholar 

  26. Nguyen, T.K., Nguyen, T.T.P., Vo, T.P., et al.: Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory. Compos. Part B 76, 273–285 (2015)

    Article  Google Scholar 

  27. Nguyen, T.K., Vo, T.P., Nguyen, B.D., et al.: An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory. Compos. Struct. 156, 238–252 (2016)

    Article  Google Scholar 

  28. Osofero, A.I., Vo, T.P., Nguyen, T.K., et al.: Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3D theories. J. Sandw. Struct. Mater. 18(1), 1–27 (2016)

    Article  Google Scholar 

  29. Bouakkaz, K., Hadji, L., Zouatnia, N., et al.: An analytical method for free vibration analysis of functionally graded sandwich beams. Wind Struct. 23(1), 59–73 (2016)

    Article  Google Scholar 

  30. Chen, D., Kitipornchai, S., Yang, J.: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin Walled Struct. 107, 39–48 (2016)

    Article  Google Scholar 

  31. Su, Z., Jin, G.Y., Wang, Y.L., et al.: A general Fourier formulation for vibration analysis of functionally graded sandwich beams with arbitrary boundary condition and resting on elastic foundations. Acta. Mech. 227, 1493–1514 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kahya, V., Turan, M.: Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element. Compos. Part B 146, 198–212 (2018)

    Article  Google Scholar 

  33. Fazzolari, F.A.: Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations. Compos. Part B 136, 254–271 (2018)

    Article  Google Scholar 

  34. Bamdad, M., Mohammadimehr, M., Alambeigi, K.: Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: magneto-electro-elastic vibration and buckling solution. J. Vib. Control 25(23–24), 2875–2893 (2019)

    Article  MathSciNet  Google Scholar 

  35. Liu, Y.J., Su, S.K., Huang, H.W., et al.: Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Compos. Part B 168, 236–242 (2019)

    Article  Google Scholar 

  36. Avcar, M., Hadji, L., Civalek, O.: Natural frequency analysis of sigmoid functionally graded sandwich beams in the framework of higher order shear deformation theory. Compos. Struct. 276, 1–14 (2021)

    Article  Google Scholar 

  37. Liu, J., He, B., Ye, W.B., et al.: High performance model for buckling of functionally graded sandwich beams using a new semi-analytical method. Compos. Struct. 262, 113614 (2021)

    Article  Google Scholar 

  38. Chen, C.D., Su, P.W.: An analytical solution for vibration in a functionally graded sandwich beam by using the refined zigzag theory. Acta Mech. 232, 4645–4668 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lazreg, H., Royal, M., Shubhankar, B., et al.: A n-order refined theory for free vibration of sandwich beams with functionally graded porous layers. Struct Eng Mech. 79(3), 279–288 (2021)

    Google Scholar 

  40. Sayyad, A.S., Avhad, P.V.: A new higher order shear and normal deformation theory for the free vibration analysis of sandwich curved beams. Compos. Struct. 280, 114948 (2022)

    Article  Google Scholar 

  41. Vo, T.P., Thai, H.T., Nguyen, T.K., et al.: Static behaviour of functionally graded sandwich beams using a quasi-3D theory. Compos. Part B Eng. 68, 59–74 (2015)

    Article  Google Scholar 

  42. Nguyen, T.K., Nguyen, B.D.: A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams. J. Sandw. Struct. Mater. 17(6), 613–631 (2015)

    Article  Google Scholar 

  43. Garg, A., Chalak, H.D., Chakrabarti, A.: Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory. Mech. Mater. 151, 1–21 (2020)

    Article  Google Scholar 

  44. Chinh, T.H., Tu, T.M., Duc, D.M., et al.: Static flexural analysis of sandwich beam with functionally graded face sheets and porous core via point interpolation meshfree method based on polynomial basic function. Arch. Appl. Mech. 91(2), 1–15 (2021)

    Google Scholar 

  45. Vinh, P.V.: Static bending analysis of functionally graded sandwich beams using a novel mixed beam element based on first-order shear deformation theory. Forces in Mech. 4, 1–10 (2021)

    Google Scholar 

  46. Li, W.X., Ma, H.T., Gao, W.: A higher-order shear deformable mixed beam element model for accurate analysis of functionally graded sandwich beams. Compos. Struct. 221, 110830 (2019)

    Article  Google Scholar 

  47. Tran, T.T., Nguyen, N.H., Do, T.V., et al.: Bending and thermal buckling of unsymmetric functionally graded sandwich beams in high-temperature environment based on a new third-order shear deformation theory. J. Sandw. Struct. Mater. 23(3), 906–930 (2021)

    Article  Google Scholar 

  48. Belarbi, M.O., Khechai, A., Bessaim, A., et al.: Finite element bending analysis of symmetric and non-symmetric functionally graded sandwich beams using a novel parabolic shear deformation theory. P. I. Mech. Eng. L-J. Mat. 235, 1–23 (2021)

    Google Scholar 

  49. Belarbi, M.O., Houari, M.S.A., Hirane, H., et al.: On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory. Compos. Struct. 279, 114715 (2022)

    Article  Google Scholar 

  50. Draiche, K., Bousahla, A.A., Tounsi, A., et al.: An integral shear and normal deformation theory for bending analysis of functionally graded sandwich curved beams. Arch. Appl. Mech. 91, 4669–4691 (2021)

    Article  Google Scholar 

  51. Sayyad, A.S., Ghugal, Y.M.: A unified five-degree-of-freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates. J. Sandw. Struct. Mater. 23(2), 1–34 (2019)

    Google Scholar 

  52. Sayyad, A.S., Ghugal, Y.M.: A sinusoidal beam theory for functionally graded sandwich curved beams. Compos. Struct. 226, 111246 (2019)

    Article  Google Scholar 

  53. Guptaa, S., Chalak, H.D.: Bending and free vibration analysis of FG sandwich beams using higher-order zigzag theory. Steel Compos. Struct. 45(4), 483–499 (2022)

    Google Scholar 

  54. Nguyen, D.K., Bui, T.T.H., Tran, T.T.H., et al.: Large deflections of functionally graded sandwich beams with influence of homogenization schemes. Arch. Appl. Mech. 92, 1757–1775 (2022)

    Article  Google Scholar 

  55. Li, W.L.: Free vibrations of beams with general boundary conditions. J. Sound Vib. 237, 709–725 (2000)

    Article  Google Scholar 

  56. Li, W.L.: Dynamic analysis of beams with arbitrary elastic supports at both ends. J. Sound Vib. 246, 751–756 (2001)

    Article  Google Scholar 

  57. Zhao, J., Wang, Q., Deng, X., et al.: A modified series solution for free vibration analyses of moderately thick functionally graded porous (FGP) deep curved and straight beams. Compos. Part B 165, 155–166 (2019)

    Article  Google Scholar 

  58. Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibration of prismatic bars. Philos. Mag. Ser. 6, 744–746 (1921)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the Gansu Natural Science Foundation Project (20JR5RA379) and by the ‘Qizhi’ Talent Cultivation Project of Lanzhou Institute of Technology (2018QZ-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Pu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Expansion coefficients of Fourier cosine series

Appendix A: Expansion coefficients of Fourier cosine series

The coefficients of Fourier cosine series generated from the supplementary functions and their derivatives, sine and transverse load terms as follows

$$f_{1} \,\,(x)\,\, = \,\sum\limits_{m\,\; = \;0}^{M} {\alpha \,_{1}^{0} } \;{\text{c}} {\kern 1pt} \,o\,s\;(\lambda {\kern 1pt}_{m} \,x\,)\;\; \Rightarrow \,\;\alpha \,_{1}^{0} \; = \left\{ {\;\begin{array}{*{20}l} {\frac{L}{12}\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \;m = 0} \hfill \\ {\frac{{2\,L\,\,\left[ {6 - 6\;( - 1\,)\,^{m} - m^{\,2} {\kern 1pt} \pi^{\,2} } \right]}}{{m^{\,4} \;\pi^{\,4} }}\quad m \ne 0} \hfill \\ \end{array} } \right.\quad$$
(A.1)
$$f_{2} \,\,(x)\,\, = \,\sum\limits_{m\,\; = \;0}^{M} {\alpha \,_{2}^{0} } \;{\text{c}} {\kern 1pt} \,o\,s\;(\lambda {\kern 1pt}_{m} \,x\,)\;\; \Rightarrow \,\;\alpha \,_{2}^{0} \; = \left\{ {\;\begin{array}{*{20}l} { - \frac{L}{12}\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \;\quad \quad m = 0} \hfill \\ {\frac{{2\,L\,\,\left[ {6 - 6\;( - 1\,)\,^{m} + m^{\,2} {\kern 1pt} \pi^{\,2} \;( - 1\,)\,^{m} } \right]}}{{m^{\,4} \;\pi^{\,4} }}\quad \;m \ne 0} \hfill \\ \end{array} } \right.\quad$$
(A.2)
$$f\,_{1}^{\prime } \,\,(x)\,\, = \,\sum\limits_{m\,\; = \;0}^{M} {\alpha \,_{1}^{1} } \;{\text{c}} {\kern 1pt} \,o\,s\;(\lambda {\kern 1pt}_{m} \,x\,)\;\; \Rightarrow \,\;\alpha \,_{1}^{1} \; = \left\{ {\;\begin{array}{*{20}l} {0\quad \quad \quad \quad \quad \quad \;m = 0} \hfill \\ {\frac{{4\,\,\left[ {2 + \;( - 1\,)\,^{m} } \right]}}{{m^{\,2} \;\pi^{\,2} }}\quad m \ne 0} \hfill \\ \end{array} } \right.\quad$$
(A.3)
$$f\,_{2}^{\prime } \,\,(x)\,\, = \,\sum\limits_{m\,\; = \;0}^{M} {\alpha \,_{2}^{1} } \;{\text{c}} {\kern 1pt} \,o\,s\;(\lambda {\kern 1pt}_{m} \,x\,)\;\; \Rightarrow \,\;\alpha \,_{2}^{1} \; = \left\{ {\;\begin{array}{*{20}l} {0\quad \quad \quad \quad \quad \quad \;\;\;m = 0} \hfill \\ {\frac{{4\,\,\left[ {1 + \;2\;( - 1\,)\,^{m} } \right]}}{{m^{\,2} \;\pi^{\,2} }}\quad m \ne 0} \hfill \\ \end{array} } \right.\quad$$
(A.4)
$$f\,_{1}^{{\prime {\kern 1pt} \prime }} \,\,(x)\,\, = \,\sum\limits_{m\,\; = \;0}^{M} {\alpha \,_{1}^{2} } \;{\text{c}} {\kern 1pt} \,o\,s\;(\lambda {\kern 1pt}_{m} \,x\,)\;\; \Rightarrow \,\;\alpha \,_{1}^{2} \; = \left\{ {\;\begin{array}{*{20}l} { - \frac{1}{L}\quad \quad \quad \quad \quad \quad m = 0} \hfill \\ {\frac{{ - 12\,\,\left[ {1 - \;( - 1\,)\,^{m} } \right]}}{{L\;m^{\,2} \;\pi^{\,2} }}\quad m \ne 0} \hfill \\ \end{array} } \right.\quad$$
(A.5)
$$f\,_{2}^{{\prime {\kern 1pt} \prime }} \,\,(x)\,\, = \,\sum\limits_{m\,\; = \;0}^{M} {\alpha \,_{2}^{2} } \;{\text{c}} {\kern 1pt} \,o\,s\;(\lambda {\kern 1pt}_{m} \,x\,)\;\; \Rightarrow \,\;\alpha \,_{2}^{2} \; = \left\{ {\;\begin{array}{*{20}l} {\frac{1}{L}\quad \quad \quad \quad \quad \quad \;\;\;m = 0} \hfill \\ {\frac{{ - 12\,\,\left[ {1 - \;( - 1\,)\,^{m} } \right]}}{{L\;m^{\,2} \;\pi^{\,2} }}\quad m \ne 0} \hfill \\ \end{array} } \right.\quad$$
(A.6)
$${\text{s}} \,i\,n\,\,(\lambda {\kern 1pt}_{m} \,x)\,\, = \,\sum\limits_{k\,\; = \;0}^{M} {\beta \,_{k}^{m} } \;{\text{c}} {\kern 1pt} \,o\,s\;(\lambda {\kern 1pt}_{k} \,x\,)\;\; \Rightarrow \,\;\beta \,_{k}^{m} \; = \left\{ {\;\,\begin{array}{*{20}l} \begin{gathered} 0\quad \quad \quad \quad \quad \quad \;\;\;\quad \quad \;m = 0 \hfill \\ 0\quad \quad \quad \quad \quad \quad \;\;\;\quad \quad \;m = k \hfill \\ \end{gathered} \hfill \\ \begin{gathered} \frac{{\,\,1 - \;( - 1{\kern 1pt} \,)\,^{m} }}{m\;\pi }\quad \quad \quad \quad \;\quad m \ne 0\;,\;\,k = 0 \hfill \\ \frac{{\,2\;m\;\,\left[ {\;( - 1\,)\,^{m\;\, + \;k} - 1} \right]}}{{\left( {k^{\,2} - m^{\,2} } \right)\;\pi }}\quad \quad m \ne 0\;,\;\,k \ne 0 \hfill \\ \end{gathered} \hfill \\ \end{array} } \right.\quad$$
(A.7)
$$q\,\,(x)\,\, = \,\,q\,_{0} \; = \,\,\sum\limits_{m\,\; = \;0}^{M} {\;Q\,_{m} } \;{\text{c}} {\kern 1pt} \,o\,s\;(\lambda {\kern 1pt}_{m} \,x\,)\;\, \Rightarrow \,\;Q\,_{m} \; = \left\{ {\;\begin{array}{*{20}l} {q\,_{0} \quad \;\;m = 0} \hfill \\ {0\quad \quad m \ne 0} \hfill \\ \end{array} } \right.\quad$$
(A.8)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Y., Jia, S., Luo, Y. et al. Bending analysis of functionally graded sandwich beams with general boundary conditions using a modified Fourier series method. Arch Appl Mech 93, 3741–3760 (2023). https://doi.org/10.1007/s00419-023-02474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02474-5

Keywords

Navigation