Skip to main content
Log in

Lie group and spectral analysis on entropy optimization for nanofluid flow over melting stretched surface with higher order slips

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The convective heat transport and entropy production in \(\textrm{NiZnFe}_2\textrm{O}_4\) (nickel zinc ferrite) + \(\textrm{C}_8\textrm{H}_{18}\) (engine oil) based nanofluid flow across a melting stretching surface are explored in the current study through similarity analysis. It is believed that the physics of flow across the stretched sheet can be fundamental for the extrusion process and heat exchangers along with several scientific and engineering applications such as geophysical applications, especially in some geothermal regions. The Lie group transformations are employed to produce the similarity representation for the partial differential equation’s system, which is then solved via the spectral local linearization method. The quantitative analysis is shown graphically to explore the effect of applicable parameters on fluid flow characteristics along with streamline visualizations. When the melting parameter is varied from \(M=0\) to \(M=1\), the heat transmission rate is increased by \(38\%\); the variation of first and second-order velocity slips from \(\lambda = 0, \, \gamma = 0\) to \(\lambda = 0.2, \, \gamma = -0.25\) reduced the entropy by \(53.7\%\), whereas \(8.4\%\) decrement is noted in the skin friction by the variation of viscous dissipation from Ec \(=0\) to Ec \(=0.5\). Furthermore, the addition of nanoparticles leads to an enhancement of streamline patterns and decrement in the surface friction as well as the heat transference rate. Comparisons and error estimations are done to show the efficiency of numerical approach. This research is found to be useful in many sectors, such as tumor treatments, electromagnetic interfaces, microwave applications, bone plate surgeries, and aerodynamic extrusion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bejan A. : A study of entropy generation in fundamental convective heat transfer, 718-725(1979)

  2. Bejan, A.: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79(3), 1191–1218 (1996)

    Article  Google Scholar 

  3. Johannessen, E., Nummedal, L., Kjelstrup, S.: Minimizing the entropy production in heat exchange. Int. J. Heat Mass Transf. 45(13), 2649–2654 (2002)

    Article  MATH  Google Scholar 

  4. Mahian, O., Kianifar, A., Kleinstreuer, C., Moh’d, A.A.N., Pop, I., Sahin, A.Z., Wongwises, S.: A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 65, 514–532 (2013)

    Article  Google Scholar 

  5. Choi, S.U., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab (ANL)Argonne National Lab (ANL), Argonne, IL (United States) (1995)

    Google Scholar 

  6. Buongiorno J. :Convective transport in nanofluids, 240-250 (2006)

  7. Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50(9–10), 2002–2018 (2007)

    Article  MATH  Google Scholar 

  8. Sakiadis, B.C.: Boundary-layer behavior on continuous solid surfaces: II The boundary layer on a continuous flat surface. AIChE J. 7(2), 221–225 (1961)

    Article  Google Scholar 

  9. Crane, L.J.: Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik. ZAMP 21(4), 645–647 (1970)

    Google Scholar 

  10. Shaw, S., RamReddy, C., Murthy, P.V., Sibanda, P.: Dual solutions for Homogeneous–Heterogeneous reactions on stagnation point flow over a stretching/shrinking sheet in a non-darcy porous medium saturated with a nanofluid. J. Nanofluids 5(3), 408–415 (2016)

    Article  Google Scholar 

  11. Ede, A.J.: Advances in free convection. Adv. Heat Transf. 4, 1–64 (1967)

    Article  Google Scholar 

  12. Rashidi, M.M., Rostami, B., Freidoonimehr, N., Abbasbandy, S.: Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng. J. 5(3), 901–912 (2014)

    Article  Google Scholar 

  13. Gebhart, B.: Effects of viscous dissipation in natural convection. J. Fluid Mech. 14(2), 225–232 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kameswaran, P.K., Narayana, M., Sibanda, P., Murthy, P.V.: Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects. Int. J. Heat Mass Transf. 55(25–26), 7587–7595 (2012)

    Article  Google Scholar 

  15. Navier, C.L.M.H.: Mémoire sur les lois du mouvement des fluides. Mémoires de l’Académie Royale des Sciences de l’Institut de France 6(1823), 389–440 (1823)

  16. Maxwell, J.C., III.: On stresses in rarefied gases arising from inequalities of temperature. Proc. R. Soc. Lond. 27(185–189), 304–308 (1878)

    MATH  Google Scholar 

  17. Beskok, A., Karniadakis, G.E.: Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3(1), 43–77 (1999)

    Article  Google Scholar 

  18. Andersson, H.I.: Slip flow past a stretching surface. Acta Mech. 158(1), 121–125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Matthews, M.T., Hill, J.M.: A note on the boundary layer equations with linear partial slip boundary condition. Appl. Math. Lett. 21, 810–813 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nandeppanavar, M.M., Vajravelu, K., Abel, M.S., Siddalingappa, M.N.: Second order slip flow and heat transfer over a stretching sheet with non-linear Navier boundary condition. Int. J. Therm. Sci. 58, 143–50 (2012)

    Article  Google Scholar 

  21. Roberts, L.: On the melting of a semi-infinite body of ice placed in a hot stream of air. J. Fluid Mech. 4(5), 505–528 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yen, Y.C., Tien, C.: Laminar heat transfer over a melting plate, the modified Leveque problem. J. Geophys. Res. 68(12), 3673–3678 (1963)

    Article  Google Scholar 

  23. Chen, M.M., Farhadieh, R., Baker, L., Jr.: On free convection melting of a solid immersed in a hot dissimilar fluid. Int. J. Heat Mass Transf. 29(8), 1087–1093 (1986)

    Article  MATH  Google Scholar 

  24. Yacob, N.A., Ishak, A., Pop, I.: Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet in a micropolar fluid. Comput. Fluids 47(1), 16–21 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Alsaadi, F.E., Muhammad, K., Hayat, T., Alsaedi, A., Asghar, S.: Numerical study of melting effect with entropy generation minimization in flow of carbon nanotubes. J. Therm. Anal. Calorim. 140(1), 321–329 (2020)

    Article  Google Scholar 

  26. Rosmila, A.B., Kandasamy, R., Muhaimin, I.: Lie symmetry group transformation for MHD natural convection flow of nanofluid over linearly porous stretching sheet in presence of thermal stratification. Appl. Math. Mech. 33(5), 593–604 (2012)

    Article  MathSciNet  Google Scholar 

  27. RamReddy, C., Pradeepa, T.: The effect of suction/injection on free convection in a micropolar fluid saturated porous medium under convective boundary condition. Proced Eng. 127, 235–243 (2015)

    Article  Google Scholar 

  28. Wu, L.A.: A slip model for rarefied gas flows at arbitrary Knudsen number. Appl. Phys. Lett. 93, 253 (2008)

    Article  Google Scholar 

  29. Epstein M., Cho D.H.: Melting heat transfer in steady laminar flow over a flat plate, J. Heat Transfer (United States), 98(3) (1976)

  30. Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(4), 571–571 (1952)

    Article  Google Scholar 

  31. Garnett, J.M.X.I.I.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Character 203(359371), 385–420 (1904)

    MATH  Google Scholar 

  32. Maraj, E.N., Shaiq, S.: Rotational impact on nanoscale particles \({\rm Fe}_2{\rm O}_4\), \({\rm NiZnFe}_2{\rm O}_4\), \({\rm MnZnFe}_2{\rm O}_4\) suspended in \({\rm C}_2{\rm H}_6{\rm O}_2\) confined between two stretchable disks: a computational study. Can. J. Phys. 98(3), 312–325 (2020)

    Article  Google Scholar 

  33. Khan, S.A., Hayat, T., Alsaedi, A.: Irreversibility analysis for nanofluid (\({\rm NiZnFe}_2{\rm O}_4\)-\({\rm C}_8{\rm H}_{18}\) and \({\rm MnZnFe}_2{\rm O}_4\)-\({\rm C}_8{\rm H}_{18}\)) flow with radiation effect. Appl. Math. Comput. 419, 126879 (2022)

    MATH  Google Scholar 

  34. Vasu B., RamReddy C., Murthy P.V., Gorla R.S.: Entropy generation analysis in nonlinear convection flow of thermally stratified fluid in saturated porous medium with convective boundary condition, J. Heat Transf. 139(9) (2017)

  35. Huminic, G., Huminic, A.: Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems. J. Mol. Liq. 302, 112533 (2020)

    Article  MATH  Google Scholar 

  36. Motsa S.S.: A new spectral local linearization method for nonlinear boundary layer flow problems. J. Appl. Math. 2013 (2013)

  37. Motsa, S.S., RamReddy, C., Rao, C.V.: Non-similarity solution for Soret effect on natural convection over the vertical frustum of a cone in a nanofluid using new bivariate pseudo-spectral local linearisation method. Appl. Math. Comput. 314, 439–455 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Bachok, N., Ishak, A., Pop, I.: Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet. Phys. Lett. A 374(40), 4075–4079 (2010)

    Article  MATH  Google Scholar 

  39. Mabood, F., Shafiq, A., Hayat, T., Abelman, S.: Radiation effects on stagnation point flow with melting heat transfer and second order slip. Results Phys. 7, 31–42 (2017)

    Article  Google Scholar 

  40. Md Basir, M.F., Mackolil, J., Mahanthesh, B., Nisar, K.S., Muhammad, T., Anuar, N.S., Bachok, N.: Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect. Proc. Instit. Mech. Eng. Part E J. Process Mech. Eng. 235(6), 2129–2140 (2021)

    Article  Google Scholar 

  41. Mabood, F., Das, K.: Melting heat transfer on hydromagnetic flow of a nanofluid over a stretching sheet with radiation and second-order slip. Eur. Phys. J. Plus 131, 1–2 (2016)

    Article  Google Scholar 

  42. Bejan A. : Convection heat transfer, John wiley & sons(2013)

  43. Mahian, O., Mahmud, S., Wongwises, S.: Entropy generation between two rotating cylinders with magnetohydrodynamic flow using nanofluids. J. Thermophys. Heat Transfer 27(1), 161–9 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramreddy Chetteti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetteti, ., Sweta & Pranitha, J. Lie group and spectral analysis on entropy optimization for nanofluid flow over melting stretched surface with higher order slips. Arch Appl Mech 93, 3965–3981 (2023). https://doi.org/10.1007/s00419-023-02470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02470-9

Keywords

Navigation