Skip to main content
Log in

Static bending, free and forced vibration responses of organic nanobeams in a temperature environment

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

For the first time, this work employs analytic solutions to study static bending, as well as free and forced vibrations of organic nanobeams, including the impact of temperature. Calculation formulas are developed on the basis of the third-order shear strain theory of thickness. These formulas also account for the influence of the size effect by using nonlocal parameters. In contrast to the findings of earlier research on nanobeams, the nonlocal parameter in this investigation fluctuates with beam thickness. In addition to this, the viscous drag parameter of the beam is taken into consideration, which further complicates the calculation method, but this is also the new point of this work. The equation is developed using the potential work principle, and the Navier form solution is used to solve the resulting equilibrium equations. Nanobeams' natural frequency and static displacement have both real and complicated components due to the involvement of the drag parameter. The research also includes some numerical calculation findings for elucidating the impact of temperature and nonlocal parameters on the static bending response and free and forced vibration of organic nanobeams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data used to support the findings of this study are included in the article.

References

  1. Chen, Q., Zheng, S., Li, Z., Zeng, C.: Size-dependent free vibration analysis of functionally graded porous piezoelectric sandwich nanobeam reinforced with graphene platelets with consideration of flexoelectric effect. Smart Mater. Struct. (2021). https://doi.org/10.1088/1361-665X/abd963

    Article  Google Scholar 

  2. Beni, Z.T., Ravandi, S.A.H., Beni, Y.T.: Size-dependent nonlinear forced vibration analysis of viscoelastic/piezoelectric nano-beam. J. Appl. Comput. Mech. 7(4), 1878–1891 (2021). https://doi.org/10.22055/JACM.2020.32044.1958

    Article  Google Scholar 

  3. Ahmadi, I.: Vibration analysis of 2D-functionally graded nanobeams using the nonlocal theory and meshless method. Eng. Anal. Bound. Elem. 124, 142–154 (2021). https://doi.org/10.1016/j.enganabound.2020.12.010

    Article  MathSciNet  MATH  Google Scholar 

  4. Hamza-Cherif, R., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, S., Bensattalah, T.: Vibration analysis of nano beam using differential transform method including thermal effect. J. Nano Res. 54, 1–14 (2018). https://doi.org/10.4028/www.scientific.net/JNanoR.54.1

    Article  Google Scholar 

  5. Nejad, M.Z., Hadi, A.: Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams. Int. J. Eng. Sci. 105, 1–11 (2016). https://doi.org/10.1016/j.ijengsci.2016.04.011

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Bég, O.A., Mahmoud, S.R.: Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos. Struct. 18(2), 425–442 (2015). https://doi.org/10.12989/scs.2015.18.2.425

    Article  Google Scholar 

  7. Li, Y.S., Ma, P., Wang, W.: Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory. J. Intell. Mater. Syst. Struct. 27(9), 1139–1149 (2016). https://doi.org/10.1177/1045389X15585899

    Article  Google Scholar 

  8. Niknam, H., Aghdam, M.M.: A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos. Struct. 119, 452–462 (2014). https://doi.org/10.1016/j.compstruct.2014.09.023

    Article  Google Scholar 

  9. Zeighampour, H., Beni, Y.T.: Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory. Appl. Math. Model. 39(18), 5354–5369 (2015). https://doi.org/10.1016/j.apm.2015.01.015

    Article  MathSciNet  MATH  Google Scholar 

  10. Shafiei, N., Kazemi, M., Safi, M., Ghadiri, M.: Nonlinear vibration of axially functionally graded non-uniform nanobeams. Int. J. Eng. Sci. 106, 77–94 (2016). https://doi.org/10.1016/j.ijengsci.2016.05.009

    Article  Google Scholar 

  11. Mashat, D.S., Zenkour, A.M., Sobhy, M.: Investigation of vibration and thermal buckling of nanobeams embedded in an elastic medium under various boundary conditions. J. Mech. 32(3), 277–287 (2016). https://doi.org/10.1017/jmech.2015.83

    Article  Google Scholar 

  12. Wang, Y.G., Song, H.F., Lin, W.H., Wang, J.K.: Large amplitude free vibration of micro/nano beams based on nonlocal thermal elasticity theory. Lat. Am. J. Solids Struct. 12(10), 1918–1933 (2015). https://doi.org/10.1590/1679-78251904

    Article  Google Scholar 

  13. Zhao, X., Wang, C.F., Zhu, W.D., Li, Y.H., Wan, X.S.: Coupled thermoelastic nonlocal forced vibration of an axially moving micro/nano-beam. Int. J. Mech. Sci. (2021). https://doi.org/10.1016/j.ijmecsci.2021.106600

    Article  Google Scholar 

  14. Hosseini, S.A., Rahmani, O., Bayat, S.: Thermal effect on forced vibration analysis of FG nanobeam subjected to moving load by Laplace transform method. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1943671

    Article  Google Scholar 

  15. Baghdadi, H., Tounsi, A., Zidour, M., Benzair, A.: Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes using nonlocal parabolic beam theory. Fuller. Nanotub. Carbon Nanostruct. 23(3), 266–272 (2015). https://doi.org/10.1080/1536383X.2013.787605

    Article  Google Scholar 

  16. Hamidi, B.A., Hosseini, S.A., Hayati, H.: Forced torsional vibration of nanobeam via nonlocal strain gradient theory and surface energy effects under moving harmonic torque. Waves Random Complex Media 32(1), 318–333 (2022). https://doi.org/10.1080/17455030.2020.1772523

    Article  MathSciNet  MATH  Google Scholar 

  17. Misagh, Z., Seyed Amirhosein, H.: A semi analytical method for electro-thermo-mechanical nonlinear vibration analysis of nanobeam resting on the Winkler-Pasternak foundations with general elastic boundary conditions. Smart Mater. Struct. 25(8), 085005 (2016)

    Article  Google Scholar 

  18. Do, T.V., Doan, D.H., Tho, N.C., Duc, N.D.: Thermal buckling analysis of cracked functionally graded plates. Int. J. Struct. Stab. Dyn. 22(8), 2250089 (2022). https://doi.org/10.1142/S0219455422500894

    Article  MathSciNet  Google Scholar 

  19. Esen, I., Daikh, A.A., Eltaher, M.A.: Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load. Eur. Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-021-01419-7

    Article  Google Scholar 

  20. Abdelrahman, A.A., Esen, I., Daikh, A.A., Eltaher, M.A.: Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1999263

    Article  Google Scholar 

  21. Cardinaletti, I., et al.: Organic and perovskite solar cells for space applications. Sol. Energy Mater. Sol. Cells 182, 121–127 (2018). https://doi.org/10.1016/j.solmat.2018.03.024

    Article  Google Scholar 

  22. Li, Q., Wu, D., Gao, W., Tin-Loi, F.: Size-dependent instability of organic solar cell resting on Winkler-Pasternak elastic foundation based on the modified strain gradient theory. Int. J. Mech. Sci. (2020). https://doi.org/10.1016/j.ijmecsci.2019.105306

    Article  Google Scholar 

  23. Duc, N.D., Seung-Eock, K., Quan, T.Q., Long, D.D., Anh, V.M.: Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell. Compos. Struct. 184, 1137–1144 (2018). https://doi.org/10.1016/j.compstruct.2017.10.064

    Article  Google Scholar 

  24. Liu, S., Wang, K., Wang, B., Li, J., Zhang, C.: Size effect on thermo-mechanical instability of micro/nano scale organic solar cells. Meccanica 57(1), 87–107 (2022). https://doi.org/10.1007/s11012-021-01411-6

    Article  MathSciNet  MATH  Google Scholar 

  25. Nguyen, T.D., Mao, S., Yeh, Y.W., Purohit, P.K., McAlpine, M.C.: Nanoscale flexoelectricity. Adv. Mater. 25(7), 946–974 (2013). https://doi.org/10.1002/adma.201203852

    Article  Google Scholar 

  26. Yudin, P.V., Tagantsev, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology (2013). https://doi.org/10.1088/0957-4484/24/43/432001

    Article  Google Scholar 

  27. Duc, D.H., Van Thom, D., Cong, P.H., Van Minh, P., Nguyen, N.X.: Vibration and static buckling behavior of variable thickness flexoelectric nanoplates. Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2088558

    Article  Google Scholar 

  28. Hieu, N.T., Do, V.T., Thai, N.D., Long, T.D., Van Minh, P.: Enhancing the Quality of the characteristic transmittance curve in the infrared region of range 2.5–7 μ m of the optical magnesium fluoride (MgF2) ceramic using the hot-pressing technique in a vacuum environment. Adv. Mater. Sci. Eng. (2020). https://doi.org/10.1155/2020/7258431

    Article  Google Scholar 

  29. Thai, L.M., Luat, D.T., Phung, V.B., Van Minh, P., Van Thom, D.: Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects. Arch. Appl. Mech. 92(1), 163–182 (2022). https://doi.org/10.1007/s00419-021-02048-3

    Article  Google Scholar 

  30. Tho, N.C., Thanh, N.T., Tho, T.D., Van Minh, P., Hoa, L.K.: Modelling of the flexoelectric effect on rotating nanobeams with geometrical imperfection. J. Brazilian Soc. Mech. Sci. Eng. (2021). https://doi.org/10.1007/s40430-021-03189-w

    Article  Google Scholar 

  31. Shimpi, R.P.: Refined plate theory and its variants. AIAA J. 40, 137–146 (2002). https://doi.org/10.2514/3.15006

    Article  Google Scholar 

  32. Cemal Eringen, A.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  33. Eltaher, M.A., Alshorbagy, A.E., Mahmoud, F.F.: Vibration analysis of Euler-Bernoulli nanobeams by using finite element method. Appl. Math. Model. 37(7), 4787–4797 (2013). https://doi.org/10.1016/j.apm.2012.10.016

    Article  MathSciNet  Google Scholar 

  34. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007). https://doi.org/10.1016/j.ijengsci.2007.04.004

    Article  MATH  Google Scholar 

  35. Tho, N.C., Thom, D.V., Cong, P.H., Zenkour, A.M., Doan, D.H., Minh, P.V.: Finite element modeling of the bending and vibration behavior of three-layer composite plates with a crack in the core layer. Compos. Struct. (2023). https://doi.org/10.1016/j.compstruct.2022.116529

    Article  Google Scholar 

  36. Van Thom, D., Duc, D.H., Van Minh, P., Tung, N.S.: Finite element modelling for free vibration response of cracked stiffened fgm plates. Vietnam J. Sci. Technol. 58(1), 119 (2020). https://doi.org/10.15625/2525-2518/58/1/14278

    Article  Google Scholar 

  37. Dat, P.T., Van Thom, D., Luat, D.T.: Free vibration of functionally graded sandwich plates with stiffeners based on the third-order shear deformation theory. Vietnam J. Mech. 38(2), 103–122 (2016). https://doi.org/10.15625/0866-7136/38/2/6730

    Article  Google Scholar 

  38. Duc, N.D., Trinh, T.D., Van Do, T., Doan, D.H.: On the buckling behavior of multi-cracked FGM plates. Lect. Notes Mech. Eng. PartF3, 29–45 (2018). https://doi.org/10.1007/978-981-10-7149-2_3

    Article  Google Scholar 

  39. Doan, D.H., Zenkour, A.M., Van Thom, D.: Finite element modeling of free vibration of cracked nanoplates with flexoelectric effects. Eur. Phys. J. Plus (2022). https://doi.org/10.1140/epjp/s13360-022-02631-9

    Article  Google Scholar 

  40. Bui, T.Q., Doan, D.H., Van Do, T., Hirose, S., Duc, N.D.: High frequency modes meshfree analysis of Reissner-Mindlin plates. J. Sci. Adv. Mater. Devices 1(3), 400–412 (2016). https://doi.org/10.1016/j.jsamd.2016.08.005

    Article  Google Scholar 

  41. Doan, T.N., et al.: Analysis of stress concentration phenomenon of cylinder laminated shells using higher-order shear deformation Quasi-3D theory. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2019.111526

    Article  Google Scholar 

  42. Tuan, L.T., Dung, N.T., Van Thom, D., Van Minh, P., Zenkour, A.M.: Propagation of non-stationary kinematic disturbances from a spherical cavity in the pseudo-elastic cosserat medium. Eur. Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-021-02191-4

    Article  Google Scholar 

  43. Duong, V.Q., Tran, N.D., Luat, D.T., Van Thom, D.: Static analysis and boundary effect of FG-CNTRC cylindrical shells with various boundary conditions using quasi-3D shear and normal deformations theory. Structures 44, 828–850 (2022). https://doi.org/10.1016/j.istruc.2022.08.039

    Article  Google Scholar 

  44. Nguyen, H.N., Tan, T.C., Luat, D.T., Phan, V.D., Van Thom, D., Van Minh, P.: Research on the buckling behavior of functionally graded plates with stiffeners based on the third-order shear deformation theory. Materials (Basel) (2019). https://doi.org/10.3390/ma12081262

    Article  Google Scholar 

  45. Dung, N.V., Tho, N.C., Ha, N.M., Hieu, V.T.: On the finite element model of rotating functionally graded graphene beams resting on elastic foundation. Math. Probl. Eng. (2021). https://doi.org/10.1155/2021/1586388

    Article  Google Scholar 

  46. Hoai, N.V., Doan, D.H., Khoa, N.M., Do, T.V., Tran, H.T.: Phase-field buckling analysis of cracked stiffened functionally graded plates. Compos. Struct. 217, 50–59 (2019). https://doi.org/10.1016/j.compstruct.2019.03.014

    Article  Google Scholar 

  47. Do, T.V., Bui, T.Q., Yu, T.T., Pham, D.T., Nguyen, C.T.: Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment. J. Comput. Sci. 21, 164–181 (2017). https://doi.org/10.1016/j.jocs.2017.06.015

    Article  MathSciNet  Google Scholar 

  48. Loghman, E., Kamali, A., Bakhtiari-Nejad, F., Abbaszadeh, M.: Nonlinear free and forced vibrations of fractional modeled viscoelastic FGM micro-beam. Appl. Math. Model. 92, 297–314 (2021). https://doi.org/10.1016/j.apm.2020.11.011

    Article  MathSciNet  MATH  Google Scholar 

  49. Cheng, F.Y., Pantelides, C.P.: Dynamic Timoshenko beam-columns on elastic media. J. Struct. Eng. 114(7), 1524–1550 (1988). https://doi.org/10.1061/(asce)0733-9445(1988)114:7(1524)

    Article  Google Scholar 

  50. Yokoyama, T.: Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations. Comput. Struct. 61(6), 995–1007 (1996). https://doi.org/10.1016/0045-7949(96)00107-1

    Article  MATH  Google Scholar 

  51. Aydogdu, M.: A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Phys. E Low-Dimens. Syst. Nanostruct. 41(9), 1651–1655 (2009). https://doi.org/10.1016/j.physe.2009.05.014

    Article  Google Scholar 

  52. Mohammadi, M., Farajpour, A., Moradi, A., Ghayour, M.: Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment. Compos. Part B Eng. 56, 629–637 (2014). https://doi.org/10.1016/j.compositesb.2013.08.060

    Article  Google Scholar 

  53. Tien, D.M., Thom, D.V., Minh, P.V., Tho, N.C., Doan, T.N., Mai, D.N.: " The application of the nonlocal theory and various shear strain theories for bending and free vibration analysis of organic nanoplates. Mech. Based Des. Struct. Mach. (2023). https://doi.org/10.1080/15397734.2023.2186893

    Article  Google Scholar 

  54. Duc, D.H., Thom, D.V., Phuc, P.M.: Buckling analysis of variable thickness cracked nanoplatesconsiderting the flexoelectric effect. Trans. Comm. Sci. J. 73(5), 470–485 (2022). https://doi.org/10.47869/tcsj.73.5.3

    Article  Google Scholar 

  55. Mohamed-Ouejdi, B., Mohammed-Sid-Ahmed, H., Daikh, A.A., Garg, A., Merzouki, T., Chalak, H.D., Hirane, H.: Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory. Comp. Struc. 264, 113712 (2021). https://doi.org/10.1016/j.compstruct.2021.113712

    Article  Google Scholar 

  56. Van Minh, P., Thai, L.M., Luat, D.T., Vu, N.D.A.: Static bending analysis of nanoplates on discontinuous elastic foundation with flexoelectric effect. J. Sci. Tech. 17(5), 47–57 (2022)

    Google Scholar 

  57. Mohamed-Ouejdi, B., Salami, S.J., Garg, A., Ahmed-Amine, D., Mohamed-Sid-Ahmed, H., Dimitri, R., Tornabene, F.: Mechanical behavior analysis of FG-CNT-reinforced polymer composite beams via a hyperbolic shear deformation theory. Cont. Mech. Thermodyn. 35, 497–520 (2023). https://doi.org/10.1007/s00161-023-01191-2

    Article  MathSciNet  Google Scholar 

  58. Mohamed-Ouejdi, B., Li, L., Houari, M.S.A., Garg, A., Chalak, H.D., Dimitri, R., Tornabene, F.: Nonlocal vibration of functionally graded nanoplates using a layerwise theory. Math. Mech. Solids. 27(12), 2634–2661 (2022). https://doi.org/10.1177/10812865221078571

    Article  MathSciNet  Google Scholar 

  59. Garg, A., Mukhopadhyay, T., Chalak, H.D., Mohamed-Ouejdi, B., Li, L., Sahoo, R.: Multiscale bending and free vibration analyses of functionally graded graphene platelet/fiber composite beams. Steel Comp. Struct. 44(5), 693–706 (2022). https://doi.org/10.12989/scs.2022.44.5.693

    Article  Google Scholar 

  60. Garg, A., Chalak, H.D., Mohamed-Ouejdi, B., Zenkour, A.M.: Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams. Mech. Adv. Mat. Struct. 29(25), 4523–4545 (2022). https://doi.org/10.1080/15376494.2021.1931993

    Article  Google Scholar 

  61. Phung, M.V., Nguyen, D.T., Doan, L.T., Nguyen, D.V., Duong, T.V.: Numerical investigation on static bending and free vibration responses of two-layer variable thickness plates with shear connectors. Iran. J. Sci. Technol—Trans. Mech. Eng. 46(4), 1047–1065 (2022). https://doi.org/10.1007/s40997-021-00459-9

    Article  Google Scholar 

  62. Garg, A., Mohamed-Ouejdi, B., Li, L., Chalak, H.D., A.: Tounsi Comparative study on the bending of exponential and sigmoidal sandwich beams under thermal conditions. Struct. Eng. Mech. 85(2), 217–231 (2023)

    Google Scholar 

  63. Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, B.M.-O., Mohammed-Sid-Ahmed, H.: A review of available theories and methodologies for the analysis of nano isotropic nano functionally graded, and CNT reinforced nanocomposite structures. Arch. Comp. Meth. Eng. 29, 2237–2270 (2022). https://doi.org/10.1007/s11831-021-09652-0

    Article  MathSciNet  Google Scholar 

  64. Belarbi, B.M.-O., Houari, M.S.A., Hirane, H., Daikh, A.A., Bordas, S.P.A.: On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory. Comp. Struct. 279, 114715 (2022). https://doi.org/10.1016/j.compstruct.2021.114715

    Article  Google Scholar 

  65. Dung, N.T., Van Minh, P., Hung, H.M., Tien, D.M.: The third-order shear deformation theory for modeling the static bending and dynamic responses of piezoelectric bidirectional functionally graded plates. Adv. Mater. Sci. Eng. (2021). https://doi.org/10.1155/2021/5520240

    Article  Google Scholar 

  66. Yayli, M.Ö.: Axial vibration analysis of a Rayleigh nanorod with deformable boundaries. Micros. Techn. 26(8), 2661–2671 (2020). https://doi.org/10.1007/s00542-020-04808-7

    Article  Google Scholar 

  67. Yayli, M.Ö.: Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions. Micro Nano Lett. 11(11), 741–745 (2016). https://doi.org/10.1049/mnl.2016.0257

    Article  Google Scholar 

  68. Yayli, M.Ö.: Free vibration analysis of a single-walled carbon nanotube embedded in an elastic matrix under rotational restraints. Micro Nano Lett. 13(2), 202–206 (2018). https://doi.org/10.1049/mnl.2017.0463

    Article  Google Scholar 

  69. Yayli, M.Ö.: Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material. Micro Nano Lett. 13(7), 1031–1035 (2018). https://doi.org/10.1049/mnl.2018.0181

    Article  MathSciNet  Google Scholar 

  70. Yayli, M.Ö.: Free vibration analysis of a rotationally restrained (FG) nanotube. Micr. Tech 25(10), 3723–3734 (2019). https://doi.org/10.1007/s00542-019-04307-4

    Article  Google Scholar 

  71. Yayli, M.Ö.: Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory. Micro Nano Lett. 13(5), 595–599 (2018). https://doi.org/10.1049/mnl.2017.0751

    Article  Google Scholar 

  72. Thai, D.N., Minh, P.V., Hoang, C.P., Duc, T.T., Cam, N.N.T., Thi, D.N.: Bending of symmetric sandwich FGM beams with shear connectors. Math. Probl. Eng. (2021). https://doi.org/10.1155/2021/7596300

    Article  MathSciNet  MATH  Google Scholar 

  73. Yayli, M.Ö.: Effects of rotational restraints on the thermal buckling of carbon nanotube. Micro Nano Lett. 14(2), 158–162 (2019). https://doi.org/10.1049/mnl.2018.5428

    Article  Google Scholar 

  74. Yayli, M.Ö.: Buckling analysis of a rotationally restrained single walled carbon nanotube. Acta Phys. Pol. A 127(3), 678–683 (2015). https://doi.org/10.12693/APhysPolA.127.678

    Article  MathSciNet  Google Scholar 

  75. Reddy, R.S., Panda, S.: A generalized finite element formulation for nonlinear frequency response analysis of viscoelastic sandwich beams using harmonic balance method. Arch. Appl. Mech. 93, 2209–2241 (2023). https://doi.org/10.1007/s00419-023-02380-w

    Article  Google Scholar 

  76. Turan, M., Yaylacı, E.U., Yaylacı, M.: Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods. Arch. Appl. Mech. 93, 1351–1372 (2023). https://doi.org/10.1007/s00419-022-02332-w

    Article  Google Scholar 

  77. Uzun, B., Civalek, Ö., Yaylı, M.Ö.: Torsional and axial vibration of restrained saturated nanorods via strain gradient elasticity. Arch. Appl. Mech. 93, 1605–1630 (2023). https://doi.org/10.1007/s00419-022-02348-2

    Article  Google Scholar 

  78. Doan, T.L., Nguyen, T.G., Phung, V.M.: Dynamic analysis of the laminated composite plate resting on two-parameter elastic foundation subjected to moving mass using finite element method. J. Sci. Tech. (2019). https://doi.org/10.56651/lqdtu.jst.v14.n1.467

    Article  Google Scholar 

  79. Mohammadnejad, M.: Free vibration analysis of axially functionally graded beams using Fredholm integral equations. Arch. Appl. Mech. 93, 961–976 (2023). https://doi.org/10.1007/s00419-022-02308-w

    Article  Google Scholar 

  80. Abouelregal, A.E.: Mathematical modeling of functionally graded nanobeams via fractional heat conduction model with non-singular kernels. Arch. Appl. Mech. 93, 977–995 (2023). https://doi.org/10.1007/s00419-022-02309-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gia Thien Luu.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Lieu, P., Luu, G.T. Static bending, free and forced vibration responses of organic nanobeams in a temperature environment. Arch Appl Mech 93, 3947–3963 (2023). https://doi.org/10.1007/s00419-023-02469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02469-2

Keywords

Navigation