Skip to main content
Log in

Damage identification based on topology optimization and Lasso regularization

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we present a damage identification method for small damages based on topology optimization and Lasso regularization. In particular, this work extends the applicability of the previously developed damage identification method using frequency response functions and topology optimization, by conducting rigorous parametric studies in terms of damping, measurement noise, and damage size. It is shown that the presented method successfully identifies small damaged regions with a reasonable accuracy. To evaluate the effectiveness of the proposed method, we applied the method to identify the damages in cantilevered plates that are subject to static or dynamic loads. The method succeeded in detecting the locations and shapes of damages more accurately than the method without Lasso regularization. Furthermore, in most cases we have considered, spurious damages generated during the optimization were successfully suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Shull, P.J.: Nondestructive Evaluation: Theory, Techniques, and Application. CRC Press, Boca Raton (2000)

    Google Scholar 

  2. Fan, W., Qiao, P.: Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10(1), 83–111 (2011)

    Article  Google Scholar 

  3. Fan, W., Qiao, P.: A 2-D continuous wavelet transform of mode shape data for damage detection of plate structures. Int. J. Solids Struct. 46(25–26), 4379–4395 (2009)

    Article  MATH  Google Scholar 

  4. Wang, F., Ling, X., Xu, X., Zhang, F.: Structural stiffness identification based on the extended Kalman filter research. Abstr. Appl. Anal. 2014, 103102 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Rucevskis, S., Janeliukstis, R., Akishin, P., Chate, A.: Mode shape-based damage detection in plate structure without baseline data. Struct. Control. Health Monit. 23(9), 1180–1193 (2016)

    Article  Google Scholar 

  6. Friswell, M., Mottershead, J., Ahmadian, H.: Finite-element model updating using experimental test data: parametrization and regularization. Philos. Trans. R. Soc. 359, 169–186 (2001)

    Article  MATH  Google Scholar 

  7. Fang, S.E., Perera, R., De Roeck, G.: Damage identification of a reinforced concrete frame by finite element model updating using damage parameterization. J. Sound Vib. 313, 544–559 (2008)

    Article  Google Scholar 

  8. Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55(5), 831–857 (1996)

    Article  Google Scholar 

  9. Owolabi, G.M., Swamidas, A.S.J., Seshadri, R.: Crack detection in beams using changes in frequencies and amplitudes of frequency response functions. J. Sound Vib. 265(1), 1–22 (2003)

    Article  Google Scholar 

  10. Khiem, N.T.: Crack detection for structure based on the dynamic stiffness model and the inverse problem of vibration. Inverse Probl. Sci. Eng. 14(1), 85–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friswell, M.I.: Damage Identification using inverse methods. Phil. Trans. R. Soc. A 365, 393–410 (2007)

    Article  Google Scholar 

  12. Lee, J.S., Kim, J.E., Kim, Y.Y.: Damage detection by the topology design formulation using modal parameters. Int. J. Numer. Meth. Eng. 69(7), 1480–1498 (2007)

    Article  MATH  Google Scholar 

  13. Nishizu, T., Takezawa, A., Kitamura, M.: Damage identification in non-destructive testing based on topology optimization and eigenfrequency analysis. J. Jpn. Soc. Naval Arch. Ocean Eng. 18, 73–80 (2013)

    Google Scholar 

  14. Eslami, S.M., Abdollahi, F., Shahmiri, J., Tavakkoli, S.M.: Structural damage detection by using topology optimization for plane stress problems. Int. J. Optim. Civ. Eng. 9(1), 159–176 (2019)

    Google Scholar 

  15. Niemann, H., Morlier, J., Shahdin, A., Gourinat, Y.: Damage localization using experimental modal parameters and topology optimization. Mech. Syst. Signal Process. 24(3), 636–652 (2010)

    Article  Google Scholar 

  16. Zhang, W., Du, Z., Sun, G., Guo, X.: A level set approach for damage identification of continuum structures based on dynamic responses. J. Sound Vib. 386, 100–1555 (2017)

    Article  Google Scholar 

  17. Reumers, P., Van Hoorickx, C., Schevenels, M., Lombaert, G.: Density filtering regularization of finite element model updating problems. Mech. Syst. Signal Process. 128, 282–294 (2019)

    Article  Google Scholar 

  18. Saomoto, H., Kase, Y., Mori, H., Yoshimi, M., Horikawa, H., Abe, S.: Fault shape detection based on topology optimization technique. J. Jpn. Soc. Civ. Eng. Ser. A 71(4), I21–I31 (2015). ((In Japanese))

    Google Scholar 

  19. Saito, A., Sugai, R., Wang, Z., Saomoto, H.: Damage identification using noisy frequency response functions based on topology optimization. J. Sound Vib. 545, 117412 (2023)

    Article  Google Scholar 

  20. Wu, Y.H., Zhou, X.Q.: L1 regularized model updating for structural damage detection. Int. J. Struct. Stab. Dyn. 18(12), 185157 (2018)

    Article  Google Scholar 

  21. Bendsøe, M., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69(9), 635–654 (1999)

    MATH  Google Scholar 

  22. Ma, Z.-D., Kikuchi, N., Cheng, H.-C.: Topological design for vibrating structures. Comput. Methods Appl. Mech. Eng. 121, 259–280 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pedersen, N.L.: Maximization of eigenvalues using topology optimization. Struct. Multidiscip. Optim. 20, 2–11 (2000)

    Article  Google Scholar 

  24. Candès, E.J., Romberg, J., Tao, T.: Robust uncertianty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory. 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Tibshirani, R.: Regression shrinkage and selection via the Lasso: a retrospective. J. R. Stat. Soc. Ser. B 73(3), 273–282 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gill, P.E., Murray, W., Saunders, M.A.: User’s Guide for SNOPT Version 7.5: Software for Large-Scale Nonlinear Programming. Stanford University, Systems Optimization Laboratory (SOL) (2015)

  28. Zargham, S., Ward, T.A., Ramli, R., Badruddin, I.A.: Topology optimization: a review for structural designs under vibration problems. Struct. Multidiscip. Optim. 53, 1157–1177 (2016)

    Article  MathSciNet  Google Scholar 

  29. Mei, Y., Goenezen, S.: Quantifying the anisotropic linear elastic behavior of solids. Int. J. Mech. Sci. 163, 105131 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Saito.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugai, R., Saito, A. & Saomoto, H. Damage identification based on topology optimization and Lasso regularization. Arch Appl Mech 93, 3827–3850 (2023). https://doi.org/10.1007/s00419-023-02464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02464-7

Keywords

Navigation