Skip to main content
Log in

BIEM via graded piezoelectric half-plane Green’s function for wave scattering by curvilinear cracks

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

A Correction to this article was published on 28 July 2023

This article has been updated

Abstract

This work presents numerical solution for wave motion in a functionally graded piezoelectric half-plane that includes contributions of incident time-harmonic SH waves, waves reflected by the traction-free surface and scattered by multiple curvilinear cracks. A special type of material gradient is studied, where material properties vary exponentially with respect to the depth coordinate. A non-hypersingular traction Boundary Integral Equation Method based on analytically derived Green’s function of a graded half-plane is developed and verified. A series of numerical results show the influence of the material gradient characteristics, the properties of the applied dynamic load, the cracks geometry, the cracks interaction phenomenon and the coupled character of the electromechanical continuum on the wave motions and on the local mechanical and electrical stress concentration fields developing in the graded half-plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Koizumi, M.: FGM activities in Japan. Compos. B Eng. 28(1), 1–4 (1997)

    Article  Google Scholar 

  2. Li, C., Weng, G.: Antiplane crack problem in functionally graded piezoelectric materials. ASME. J. Appl. Mech. 69, 481–488 (2002)

    Article  MATH  Google Scholar 

  3. Shindo, Y., Minamida, K., Narita, F.: Antiplane shear wave scattering from two curved interface cracks between a piezoelectric fiber and an elastic matrix. Smart Mater. Str. 11(4), 534–540 (2002)

    Article  Google Scholar 

  4. Kulikov, A.A., Nazarov, S.A.: Cracks in piezoelectric and electricconducting bodies. Sib. J. Ind. Math. 8, 709–87 (2005)

    Google Scholar 

  5. Wang, X.D., Meguid, S.A.: Effect of electromechanical coupling on the dynamic interaction of cracks in piezoelectric materials. Acta Mech. 143, 1–15 (2000)

    Article  MATH  Google Scholar 

  6. Shindo, Y., Ozawa, E.: Dynamic analysis of a cracked piezoelectric material. In: Hsieh, R.K.T. (ed.) Mechanical Modeling of New Electromagnetic Materials, pp. 297–304. Elsevier, Amsterdam (1990)

    Google Scholar 

  7. Narita, F., Shindo, Y.: Dynamic anti-plane shear of a cracked piezoelectric ceramic. Theor. Appl. Mech. 29, 169–180 (1998)

    Google Scholar 

  8. Mouley, J., Sarkar, N., De, S.: Griffith crack analysis in nonlocal magneto-elastic strip using Daubechies wavelets. Waves Random Complex Media (2023). https://doi.org/10.1080/17455030.2022.2163060

    Article  Google Scholar 

  9. Kuna, M.: Finite element analyses of cracks in piezoelectric structures: a survey. Arch. Appl. Mech. 76, 725–745 (2006)

    Article  MATH  Google Scholar 

  10. Guo, X.H., Fang, D.N.: Analysis of piezoelectric fracture under combined mechanical and electrical loading based on meshless method. Key Eng. Mater. 261–263, 543–548 (2004)

    Article  Google Scholar 

  11. Davi, G., Milazzo, A.: Multidomain boundary integral formulation for piezoelectric materials fracture mechanics. Int. J. Solids Struct. 38, 7065–7078 (2001)

    Article  MATH  Google Scholar 

  12. Hong, H.-K., Chen, J.T.: Derivation of integral equations of elasticity. J. Eng. Mech. ASCE 114(6), 1028–1044 (1988)

    Article  Google Scholar 

  13. Chen, J.T., Hong, H.-K.: Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series. Appl. Mech. Rev. ASME 52(1), 17–33 (1999)

    Article  Google Scholar 

  14. Gross, D., Rangelov, T., Dineva, P.: 2 D wave scattering by a crack in a piezoelectric plane using traction BIEM. Struct. Integr. Dur. 1(1), 35–47 (2005)

    Google Scholar 

  15. Zhang, C., Gross, D.: On Wave Propagation in Elastic Solids with Cracks. Computational Mechanical Publications, Southampton (1998)

    MATH  Google Scholar 

  16. Dineva, P., Gross, D., Müller, R., Rangelov, T.: Time-harmonic crack problems in functionally graded piezoelectric solids via BIEM. Eng. Fract. Mech. 77, 73–91 (2010)

    Article  Google Scholar 

  17. Dineva, P., Gross, D., Müller, R., Rangelov, T.: BIEM analysis of dynamically loaded anti-plane cracks in graded piezoelectric finite solids. Int. J. Solids Struct. 47, 3150–3165 (2010)

    Article  MATH  Google Scholar 

  18. Dineva, P., Gross, D., Müller, R., Rangelov, T.: Dynamic Fracture of Piezoelectric Materials. Solutions of Time-harmonic Problems Via BIEM. Solid Mechanics and its Applications, v. 212, Springer Int. Publ., Switzerland (2014)

  19. Ma, L., Wu, L.Z., Zhou, Z.J., Guo, L.C., Shi, L.P.: Scattering of the harmonic anti-plane share waves by two collinear cracks in functionally graded piezoelectric materials. Eur. J. Mech. Solids 23, 633–643 (2004)

    Article  MATH  Google Scholar 

  20. Ma, L., Wu, L.Z., Zhou, Z.J., Guo, L.C.: Scattering of the harmonic anti-plane share waves by a crack in functionally graded piezoelectric materials. Compos. Struct. 69, 436–441 (2005)

    Article  Google Scholar 

  21. Singh, B.M., Rokne, J., Dhaliwal, R.S., Vrbik, J.: Scattering of anti-plane shear wave by an interface crack between two bonded dissimilar functionally graded piezoelectric materials. Proc. R. Soc. A 465, 1249–1269 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liang, J.: Investigation the dynamic interaction between two collinear cracks in the functionally graded piezoelectric materials subjected to the harmonic anti-plane shear stress wave by using the non-local theory. Jpn. Soc. Mech. Eng. 49(4), 570–580 (2006)

    Google Scholar 

  23. Jin, B., Zhong, Z.: A moving mode- III crack in functionally graded piezoelectric material: permeable problem. Mech. Res. Commun. 29, 217–224 (2002)

    Article  MATH  Google Scholar 

  24. Rangelov, T., Dineva, P., Gross, D.: Effect of material inhomogeneity on the dynamic behavior of cracked piezoelectric solids: a BIEM approach. ZAMM-Z Angew. Math. Mech. 88, 86–99 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Müller, R., Dineva, P., Rangelov, T., Gross, D.: Anti-plane dynamic hole-crack interaction in a functionally gradede piezoelectric media. Arch. Appl. Mech. 82, 97–110 (2012)

    Article  MATH  Google Scholar 

  26. Chen, J., Liu, Z.X., Zou, Z.Z.: Electromechanical impact of a crack in functionally graded piezoelectric medium. Theoret. Appl. Fract. Mech. 39, 47–60 (2003)

    Article  Google Scholar 

  27. Sladek, J., Sladek, V., Zhang, C., Solek, P., Starek, L.: Fracture analysis in continuously nonhomogeneous piezoelectric solids by the MLPG. Comput. Methods Eng. Sci. 19(3), 247–262 (2007)

    MATH  Google Scholar 

  28. Chen, J., Soh, A.K., Liu, J., Liu, Z.X.: Transient anti-plane crack problem of a functionally graded piezoelectric strip bonded to elastic layers. Acta Mech. 169, 87–100 (2004)

    Article  MATH  Google Scholar 

  29. Chen, J., Liu, Z.X.: On the dynamic behavior of a functionally graded piezoelectric strip with periodic cracks vertical to the boundary. Int. J. Solids Struct. 42, 3133–3146 (2005)

    Article  MATH  Google Scholar 

  30. Mousavi, S.M., Paavola, J.: Analysis of cracked functionally graded piesoelectric strip. Int. J. Solids Struct. 50, 2449–2456 (2013)

    Article  Google Scholar 

  31. Landau, D.L., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1960)

    MATH  Google Scholar 

  32. Manolis, G.D., Shaw, R.: Green’s function for a vector wave equation in mildly heterogeneous continuum. Wave Motion 24, 59–83 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rangelov, T., Dineva, P.: Green‘s function and wave scattering in inhomogeneous anti-plane PEM half-plane. In: Slavova, A. (ed.) NTADES 2022, Springer PROMS, V. 412, pp. 117–127. Springer Nature (2023)

  34. Noble, B.: Methods Based on the Wiener–Hopf Technique. Pergamon Press, New York (1958)

    MATH  Google Scholar 

  35. Gross, D., Seelig, T.: Fracture Mechanics: With an Introduction to Micromechanics. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  36. Rangelov, T., Dineva, P., Gross, D.: A hyper-singular traction BIEM for stress intensity factor computation in a finite cracked body. Eng. Anal. Bound. Elem. 27, 9–21 (2003)

    Article  MATH  Google Scholar 

  37. Mathematica 6.0 for MS Windows: Champaign, Illinois (2007)

  38. Wang, X.D., Meguid, S.A.: Modelling and analysis of the dynamic behaviour of piezoelectric materials containing interfacing cracks. Mech. Mater. 32, 723–737 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Bulgarian National Science Fund, contract No \(\mathrm K\Pi \)-06-H57/3/15.11.2021 and also by the Grant No BG05M2OP001\(-\)1.001-0003, financed by the Science and Education for Smart Growth Operational Program (2014–2020) in Bulgaria and co-financed by the European Union through the European Structural and Investment Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsviatko Rangelov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangelov, T., Dineva, P. BIEM via graded piezoelectric half-plane Green’s function for wave scattering by curvilinear cracks. Arch Appl Mech 93, 3683–3696 (2023). https://doi.org/10.1007/s00419-023-02463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02463-8

Keywords

Mathematics Subject Classification

Navigation