Skip to main content
Log in

New Fourier expansion for thermal buckling analysis of rectangular thin plates with various edge restraints

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

For the first time, a modified two-dimensional Fourier series approach is proposed for new thermal buckling analysis of rectangular thin plates under various edge conditions. The solution form of plate deflection is considered to be in terms of a double Fourier Sine series (Navier-form solution) whose derivatives are determined via utilizing the Stoke’s transform technic. The present study exhibits the following significant merits: (a) the method adopted allows one to consider any possible combination of boundary conditions with no necessity to be satisfied in the Fourier series; (b) the given solution procedure is simple and straightforward since the complicated boundary value problem (BVP) of partial differential equation (PDE) can be changed into solving sets of linear algebra equations, which heavily decreases the complicated mathematical manipulations of plate thermal buckling problem; (c) all the results acquired converge rapidly because of using the sum function of series. Greeting agreements between the present analytical solutions with the numerical results provided by FEM testifies the accuracy of the approach proposed. The present results are believed to be severe as new benchmarks for validating other methods and providing better design for plate structures. The influences of the aspect ratio and boundary condition on the thermal buckling behaviors of plates are also investigated and discussed. Furthermore, it is capable to extend the present solution procedure to deal with problems of plates under more complex edge conditions by ways of utilizing other Fourier series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ray, M.C.: Zeroth-order shear deformation theory for laminated composite plates. J. Appl. Mech. 70, 374–380 (2003)

    Article  MATH  Google Scholar 

  2. Hosseini-Hashemi, S., Khorshidi, K., Amabili, M.: Exact solution for linear buckling of rectangular Mindlin plates. J. Sound Vib. 315, 318–342 (2008)

    Article  Google Scholar 

  3. Thai, H.-T., Kim, S.-E.: Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates. Int. J. Mech. Sci. 54, 269–276 (2012)

    Article  Google Scholar 

  4. Timošenko, S.P., Woinowsky-Krieger, S.; Theory of plates and shells. 2. ed., internat. ed., [Nachdr.]. Auckland Hamburg: McGraw-Hill; 20.

  5. Moita, J.S., Araújo, A.L., Correia, V.F., Mota Soares, C.M., Herskovits, J.: Buckling and nonlinear response of functionally graded plates under thermo-mechanical loading. Compos. Struct. 202, 719–730 (2018)

    Article  Google Scholar 

  6. Xu, Y., Ren, S., Zhang, W., Wu, Z., Gong, W., Li, H.: Study of thermal buckling behavior of plain woven C/SiC composite plate using digital image correlation technique and finite element simulation. Thin-Walled Struct. 131, 385–392 (2018)

    Article  Google Scholar 

  7. Trabelsi, S., Frikha, A., Zghal, S., Dammak, F.: A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Eng. Struct. 178, 444–459 (2019)

    Article  Google Scholar 

  8. Farrokh, M., Taheripur, M., Carrera, E.: Optimum distribution of materials for functionally graded rectangular plates considering thermal buckling. Compos. Struct. 289, 115401 (2022)

    Article  Google Scholar 

  9. Tanzadeh, H., Amoushahi, H.: Buckling analysis of orthotropic nanoplates based on nonlocal strain gradient theory using the higher-order finite strip method (H-FSM). Eur. J. Mech. A. Solids 95, 104622 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yu, T., Yin, S., Bui, T.Q., Liu, C., Wattanasakulpong, N.: Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads. Compos. Struct. 162, 54–69 (2017)

    Article  Google Scholar 

  11. Yang, H.S., Dong, C.Y., Qin, X.C., Wu, Y.H.: Vibration and buckling analyses of FGM plates with multiple internal defects using XIGA-PHT and FCM under thermal and mechanical loads. Appl. Math. Model. 78, 433–481 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, Q., Yu, T., Van Lich, L., Bui, T.Q.: Thermal buckling adaptive multi-patch isogeometric analysis of arbitrary complex-shaped plates based on locally refined NURBS and Nitsche’s method. Thin-Walled Struct. 169, 108383 (2021)

    Article  Google Scholar 

  13. Fang, W., Zhang, J., Yu, T., Bui, T.Q.: Analysis of thermal effect on buckling of imperfect FG composite plates by adaptive XIGA. Compos. Struct. 275, 114450 (2021)

    Article  Google Scholar 

  14. Bagheri, H., Kiani, Y., Eslami, M.R.: Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation. Comput. Math. Appl. 75, 1566–1581 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, J.F., Cao, S.H., Zhang, W.: Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate. Eur. J. Mech. A. Solids 85, 104105 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lai, S.K., Zhang, L.H.: Thermal effect on vibration and buckling analysis of thin isotropic/orthotropic rectangular plates with crack defects. Eng. Struct. 177, 444–458 (2018)

    Article  Google Scholar 

  17. Mansouri, M.H., Shariyat, M.: Biaxial thermo-mechanical buckling of orthotropic auxetic FGM plates with temperature and moisture dependent material properties on elastic foundations. Compos. B Eng. 83, 88–104 (2015)

    Article  Google Scholar 

  18. Naghsh, A., Azhari, M., Saadatpour, M.M.: Thermal buckling analysis of point-supported laminated composite plates in unilateral contact. Appl. Math. Model. 56, 564–583 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Borges, R.A., Rodovalho, L.F.F., Sales, Td.P., Rade, D.A.: Stochastic eigenfrequency and buckling analyses of plates subjected to random temperature distributions. Mech. Syst. Signal Proces. 147, 107088 (2021)

    Article  Google Scholar 

  20. Zhang, D.-G., Zhou, H.-M.: Mechanical and thermal post-buckling analysis of FGM rectangular plates with various supported boundaries resting on nonlinear elastic foundations. Thin-Walled Struct. 89, 142–151 (2015)

    Article  Google Scholar 

  21. Joshi, P.V., Gupta, A., Jain, N.K., Salhotra, R., Rawani, A.M., Ramtekkar, G.D.: Effect of thermal environment on free vibration and buckling of partially cracked isotropic and FGM micro plates based on a non classical Kirchhoff’s plate theory: an analytical approach. Int. J. Mech. Sci. 131–132, 155–170 (2017)

    Article  Google Scholar 

  22. Kim, S.-E., Duc, N.D., Nam, V.H., Van Sy, N.: Nonlinear vibration and dynamic buckling of eccentrically oblique stiffened FGM plates resting on elastic foundations in thermal environment. Thin-Walled Struct. 142, 287–296 (2019)

    Article  Google Scholar 

  23. Alibeigloo, A.: Coupled thermoelasticity analysis of carbon nano tube reinforced composite rectangular plate subjected to thermal shock. Compos. B Eng. 153, 445–455 (2018)

    Article  Google Scholar 

  24. Dong, Y.H., Li, Y.H.: A unified nonlinear analytical solution of bending, buckling and vibration for the temperature-dependent FG rectangular plates subjected to thermal load. Compos. Struct. 159, 689–701 (2017)

    Article  Google Scholar 

  25. Duc, N.D., Cong, P.H.: Nonlinear postbuckling of symmetric S-FGM plates resting on elastic foundations using higher order shear deformation plate theory in thermal environments. Compos. Struct. 100, 566–574 (2013)

    Article  Google Scholar 

  26. Zhang, J., Zhou, C., Ullah, S., Zhong, Y., Li, R.: Two-dimensional generalized finite integral transform method for new analytic bending solutions of orthotropic rectangular thin foundation plates. Appl. Math. Lett. 92, 8–14 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ullah, S., Zhang, J., Zhong, Y.: New analytical solutions of buckling problem of rotationally-restrained rectangular thin plates. Int. J. Appl. Mech. 11, 1950101 (2019)

    Article  Google Scholar 

  28. Zhang, J., Lu, J., Ullah, S., Gao, Y., Zhao, D., Jamal, A., et al.: Free vibration analysis of thin rectangular plates with two adjacent edges rotationally-restrained and the others free using finite Fourier integral transform method. Struct. Eng. Mech. 80, 455–462 (2021)

    Google Scholar 

  29. Zhang. J., Lu, J., Ullah, S., Gao, Y., Zhao, D.: Buckling analysis of rectangular thin plates with two opposite edges free and others rotationally restrained by finite Fourier integral transform method. ZAMM J. Appl. Math. Mech./Zeitschrift Für Angewandte Mathematik Und Mechanik 101 (2021).

  30. Ullah, S., Zhong, Y., Zhang, J.: Analytical buckling solutions of rectangular thin plates by straightforward generalized integral transform method. Int. J. Mech. Sci. 152, 535–544 (2019)

    Article  Google Scholar 

  31. Zhang, J., Liu, S., Ullah, S., Gao, Y.: Analytical bending solutions of thin plates with two adjacent edges free and the others clamped or simply supported using finite integral transform method. Comput. Appl. Math. 39, 266 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, J., Ullah, S., Gao, Y., Avcar, M., Civalek, O.: Analysis of orthotropic plates by the two-dimensional generalized FIT method. Comput. Concr. 26, 421–427 (2020)

    Google Scholar 

  33. Zhang, J., Zhao, Q., Ullah, S., Geng, L., Civalek, Ö.: A new analytical solution of vibration response of orthotropic composite plates with two adjacent edges rotationally-restrained and the others free. Compos. Struct. 266, 113882 (2021)

    Article  Google Scholar 

  34. Hu, Z., Shi, Y., Xiong, S., Zheng, X., Li, R.: New analytic free vibration solutions of non-Lévy-type porous FGM rectangular plates within the symplectic framework. Thin-Walled Struct. 185, 110609 (2023)

    Article  Google Scholar 

  35. Hu, Z., Zhou, C., Zheng, X., Ni, Z., Li, R.: Free vibration of non-Lévy-type functionally graded doubly curved shallow shells: New analytic solutions. Compos. Struct. 304, 116389 (2023)

    Article  Google Scholar 

  36. Zheng, X., Xu, D., Ni, Z., Zhou, C., An, D., Wang, B., et al.: New benchmark free vibration solutions of non-Lévy-type thick rectangular plates based on third-order shear deformation theory. Compos. Struct. 268, 113955 (2021)

    Article  Google Scholar 

  37. Zhou, C., An, D., Zhou, J., Wang, Z., Li, R.: On new buckling solutions of moderately thick rectangular plates by the symplectic superposition method within the Hamiltonian-system framework. Appl. Math. Model. 94, 226–241 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hu, Z., Zhou, C., Ni, Z., Lin, X., Li, R.: New symplectic analytic solutions for buckling of CNT reinforced composite rectangular plates. Compos. Struct. 303, 116361 (2023)

    Article  Google Scholar 

  39. Hu, Z., Zheng, X., An, D., Zhou, C., Yang, Y., Li, R.: New analytic buckling solutions of side-cracked rectangular thin plates by the symplectic superposition method. Int. J. Mech. Sci. 191, 106051 (2021)

    Article  Google Scholar 

  40. Zheng, X., Ni, Z., Xu, D., Wang, Z., Liu, M., Li, Y., et al.: New analytic buckling solutions of non-Lévy-type cylindrical panels within the symplectic framework. Appl. Math. Model. 98, 398–415 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, C., Wang, Z., Chen, Y., Xu, J., Li, R.: Benchmark buckling solutions of truncated conical shells by multiplicative perturbation with precise matrix exponential computation. J. Appl. Mech. 89, 081004 (2022)

    Article  Google Scholar 

  42. Xiong, S., Zhou, C., Zhao, L., Zheng, X., Zhao, Y., Wang, B., et al.: Symplectic framework-based new analytic solutions for thermal buckling of temperature-dependent moderately thick functionally graded rectangular plates. Int. J. Struct. Stab. Dyn. 22, 2250154 (2022)

    Article  MathSciNet  Google Scholar 

  43. Xiong, S., Zhou, C., Zheng, X., An, D., Xu, D., Hu, Z., et al.: New analytic thermal buckling solutions of non-Lévy-type functionally graded rectangular plates by the symplectic superposition method. Acta Mech. 233, 2955–2968 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schreiber, P., Mittelstedt, C., Beerhorst, M.: Buckling of shear-deformable orthotropic laminated plates with elastic restraints. Thin-Walled Struct. 157, 107071 (2020)

    Article  Google Scholar 

  45. Gorman, D.J., Yu, S.D.: A review of the superposition method for computing free vibration eigenvalues of elastic structures. Comput. Struct. 104–105, 27–37 (2012)

    Article  Google Scholar 

  46. Reza Eslami, M., Hetnarski, R.B., Ignaczak, J., Noda, N., Sumi, N., Tanigawa, Y.: Theory of Elasticity and Thermal Stresses: Explanations, Problems and Solutions, vol. 197. Springer, Netherlands, Dordrecht (2013)

    Book  MATH  Google Scholar 

  47. Ventsel, E., Krauthammer, T., Carrera, E.: Thin plates and shells: theory, analysis, and applications. Appl. Mech. Rev. 55, B72 (2002)

    Article  Google Scholar 

  48. Latifi, M., Farhatnia, F., Kadkhodaei, M.: Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion. Eur. J. Mech. A. Solids 41, 16–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Khalili, M.R., Malekzadeh, K., Mittal, R.K.: A new approach to static and dynamic analysis of composite plates with different boundary conditions. Compos. Struct. 69, 149–155 (2005)

    Article  Google Scholar 

  50. Khennane, A.: Introduction to Finite Element Analysis Using MATLAB® and Abaqus. Taylor and Francis. CRC Press (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

The work reported in this paper is supported by the National Natural Science Foundation of China (NO. 52104149), Natural Science Foundation of Hebei Province (E2020203077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyue Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A: List of variables.

a, b, h

Length, width and thickness of the rectangular plate, respectively

\(w\left( {x,y} \right)\)

The deflection of a given point on plate surface (x, y)

\(\mu ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} E,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} G_{xy} {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} D\)

The Poisson's ratio, Young’s moduli, shear modulus and flexural rigidity of the plate, respectively

\(\sigma_{x} ,\sigma_{y}\)

The normal stresses in the x and y directions, respectively

\(\varepsilon_{x} ,\varepsilon_{y}\)

The normal strains in the x and y directions, respectively

\(\tau_{xy} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} \gamma_{xy}\)

The shear stress and strain in the x–y plane, respectively

\(\chi\)

Thermal expansion coefficients

\(T_{0}\)

The initial uniform temperature of the plate

\(T\)

The finial value of the temperature uniformly raised

\(T_{ref}\)

A stress-free reference temperature

\(\Delta T = T - T_{0}\)

An uniform temperature increment

\(\Delta T_{cr}\)

The critical buckling temperature of the plate

\(N_{x}^{T} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} N_{y}^{T}\)

Membrane force stimulated by the increasing of temperature

\(M_{x} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} M_{y}\)

Bending moments of the y and x axes, respectively

\(- D \cdot F_{n} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - D \cdot G_{n}\)

Fourier coefficients of the bending moment at edges x = 0, a, respectively

\(- D \cdot I_{m} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - D \cdot H_{m}\)

Fourier coefficients of the bending moment at edges y = 0,b, respectively

\(w_{mn}\)

The Fourier coefficient for the deflection of the plate

a/b

The aspect ratio of the plate

t

The number of terms of the series solution

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Guo, C., Wang, K. et al. New Fourier expansion for thermal buckling analysis of rectangular thin plates with various edge restraints. Arch Appl Mech 93, 3411–3426 (2023). https://doi.org/10.1007/s00419-023-02447-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02447-8

Keywords

Navigation