Skip to main content

Advertisement

Log in

Experimental investigations on mechanical and failure behaviors of transversely isotropic shale containing twin fissures under true triaxial stresses

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Carbonaceous shale is the common carrier of underground engineering, and its strength assessment and failure behavior prediction are essential for the analysis of engineering stability. Carbonaceous shale naturally contains defects in different forms such as bedding plane and fissures, acting as the potential sources for the crack development and failure. To investigate the shale behaviors in underground engineering, true triaxial compression experiments are performed on transversely isotropic shale samples containing twin fissures, and the mechanical properties and failure characteristics are the main concern. Results show that the strength difference of shales with the same bedding angle under different σ3 directions, respectively, reaches 33.34 MPa and 9.63 MPa, and the strength difference with the same σ3 direction under different bedding angles attains 43.8 MPa and 20.09 MPa. A new mechanism of the "effect of σ1-defect-coupling-induced fracture" is proposed to interpret the σ1-dominated crack damage, the fissure-dominated crack damage, and bedding plane effect. For the shale, the shear mechanism is dominated during the initial loading stage, while the tensile mechanism is progressively enhanced as the loading proceeds toward the failure. Moreover, nine crack types and five crack coalescence modes are found in current true triaxial experiments. This study provides the experimental basis for the evaluation of the shale behaviors in response to a truly three-dimensional stress circumstance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Xu, G.W., Gutierrez, M., He, C., Wang, S.M.: Modeling of the effects of weakness planes in rock masses on the stability of tunnels using an equivalent continuum and damage model. Acta Geotech. 16, 2143–2164 (2021). https://doi.org/10.1007/s11440-020-01087-4

    Article  Google Scholar 

  2. Li, Z.W., Xing, S.C., Long, M.C., Liu, Y.: On the thermal conductivity anisotropy of thinly interbedded rock. Acta Geotech. (2022). https://doi.org/10.1007/s11440-022-01726-y

    Article  Google Scholar 

  3. Xu, G.W., Hu, X.Y., Tang, R., Hou, Z.K.: Fracture evolution of transversely isotropic rocks with a pre-existing flaw under compression tests based on moment tensor analysis. Acta Geotech. 17, 169–203 (2021). https://doi.org/10.1007/s11440-021-01214-9

    Article  Google Scholar 

  4. Li, X.R., Xu, Q., Xie, H.Q., Xiao, M.L., He, J.D.: Damage constitutive law and damage evolution characteristics for fractured rock under coupling action of static and dynamic load. Chin. J. Rock Mech. Eng. 34, 3029–3036 (2015). https://doi.org/10.13722/j.cnki.jrme.2014.1203

    Article  Google Scholar 

  5. Chu, C.Q., Wu, S.C., Zhang, S.H., Guo, P., Zhang, M.: Mechanical behavior anisotropy and fracture characteristics of bedded sandstone. J. Cent. South Univ. (Sci. Technol.) 51, 2232–2246 (2020). https://doi.org/10.11817/j.issn.1672-7207.2020.08.018

    Article  Google Scholar 

  6. Kong, W.Q., Li, Y., Nie, L.C., Dong, Z.X., Cai, W.B., et al.: Experimental and numerical investigations on crack propagation characteristics of rock-like specimens with preexisting flaws subjected to combined actions of internal hydraulic pressure and shear force. Arch Appl Mech. 92, 221–239 (2021). https://doi.org/10.1007/s00419-021-02052-7

    Article  Google Scholar 

  7. Zhang, Y.L., Shao, J.F., Zhu, S., Liu, Z.B., Shi, C.: Effect of rock anisotropy on initiation and propagation of fractures due to fluid pressurization. Acta Geotech. 1–20 (2022). https://doi.org/10.1007/s11440-022-01703-5

  8. Li, X., Jia, Y., Zhang, Q., Qi, C.: A micro-macro model of pore pressure effect on shear fracture in brittle rocks under compression. Arch Appl Mech. 92, 1157–1165 (2022). https://doi.org/10.1007/s00419-022-02141-1

    Article  Google Scholar 

  9. Wong, L.N.Y., Einstein, H.H.: Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int. J. Rock Mech. Min. Sci. 46, 239–249 (2009). https://doi.org/10.1016/j.ijrmms.2008.03.006

    Article  Google Scholar 

  10. Wong, L.N.Y., Einstein, H.H.: Crack coalescence in molded gypsum and carrara marble: Part 1. macroscopic observations and interpretation. Rock Mech Rock Eng. 42, 475–511 (2008). https://doi.org/10.1007/s00603-008-0002-4

    Article  Google Scholar 

  11. Moradian, Z., Einstein, H.H., Ballivy, G.: Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals. Rock Mech Rock Eng. 49, 785–800 (2015). https://doi.org/10.1007/s00603-015-0775-1

    Article  Google Scholar 

  12. Yang, S.Q., Jing, H.W.: Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression. Int. J. Fract. 168, 227–250 (2010). https://doi.org/10.1007/s10704-010-9576-4

    Article  Google Scholar 

  13. Afolagboye, L.O., He, J.M., Wang, S.J.: Crack initiation and coalescence behavior of two non-parallel flaws. Geotech Geol Eng. 36, 105–133 (2017). https://doi.org/10.1007/s10706-017-0310-0

    Article  Google Scholar 

  14. Zhou, X.P., Zhang, J.Z.: Damage progression and acoustic emission in brittle failure of granite and sandstone. Int. J. Rock Mech. Min. Sci. (2021). https://doi.org/10.1016/j.ijrmms.2021.104789

    Article  Google Scholar 

  15. Modiriasari, A., Bobet, A., Pyrak-Nolte, L.J.: Active seismic monitoring of crack initiation, propagation, and coalescence in rock. Rock Mech Rock Eng. 50, 2311–2325 (2017). https://doi.org/10.1007/s00603-017-1235-x

    Article  Google Scholar 

  16. Zhou, X.P., Zhang, J.Z., Wong, L.N.Y.: Experimental study on the growth, coalescence and wrapping behaviors of 3d cross-embedded flaws under uniaxial compression. Rock Mech Rock Eng. 51, 1379–1400 (2018). https://doi.org/10.1007/s00603-018-1406-4

    Article  Google Scholar 

  17. Brooks, Z., Ulm, F.J., Einstein, H.H.: Environmental scanning electron microscopy (Esem) and nanoindentation investigation of the crack tip process zone in marble. Acta Geotech. 8, 223–245 (2013). https://doi.org/10.1007/s11440-013-0213-z

    Article  Google Scholar 

  18. Mathur, G.K., Maji, V., Misra, S., Tiwari, G.: Effect of displacement rates on the mechanical integrity of soft-porous rock analogue containing non-persistent joints of variable lengths. J Earth Syst Sci. (2022). https://doi.org/10.1007/s12040-022-01862-9

    Article  Google Scholar 

  19. Lee, J., Ha, Y.D., Hong, J.W.: Crack coalescence morphology in rock-like material under compression. Int. J. Fract. 203, 211–236 (2016). https://doi.org/10.1007/s10704-016-0138-2

    Article  Google Scholar 

  20. Zhang, J.Z., Zhou, X.P.: Ae event rate characteristics of flawed granite: from damage stress to ultimate failure. Geophys. J. Int. 222, 795–814 (2020). https://doi.org/10.1093/gji/ggaa207

    Article  Google Scholar 

  21. Bobet, A., Einstein, H.H.: Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int. J. Rock Mech. Min. Sci. 35, 863–888 (1998). https://doi.org/10.1016/S0148-9062(98)00005-9

    Article  Google Scholar 

  22. Sagong, M., Park, D., Yoo, J., Lee, J.S.: Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression. Int. J. Rock Mech. Min. Sci. 48, 1055–1067 (2011). https://doi.org/10.1016/j.ijrmms.2011.09.001

    Article  Google Scholar 

  23. Mughieda, O., Karasneh, I.: Coalescence of offset rock joints under biaxial loading. Geotech Geol Eng. 24, 985–999 (2006). https://doi.org/10.1007/s10706-005-8352-0

    Article  Google Scholar 

  24. Zhang, J.Z., Zhou, X.P., Du, Y.H.: Cracking behaviors and acoustic emission characteristics in brittle failure of flawed sandstone: a true triaxial experiment investigation. Rock Mech Rock Eng. (2022). https://doi.org/10.1007/s00603-022-03087-0

    Article  Google Scholar 

  25. Chen, G.Q., Liu, D., Xu, P., Qin, C.A.: True-triaxial test on unloading failure of jointed rock bridge. Chin. J. Rock Mech. Eng. 37, 325–338 (2018). https://doi.org/10.13722/j.cnki.jrme.2017.0648

    Article  Google Scholar 

  26. Du, Y.T., Li, T.C., Li, W.T., Ren, Y., Wang, G., et al.: Experimental study of mechanical and permeability behaviors during the failure of sandstone containing two preexisting fissures under triaxial compression. Rock Mech Rock Eng. 53, 3673–3697 (2020). https://doi.org/10.1007/s00603-020-02119-x

    Article  Google Scholar 

  27. Niandou, H., Shao, J.F., Henry, J.P., Fourmaintraux, D.: Laboratory investigation of the mechanical behaviour of tournemire shale. Int. J. Rock Mech. Min. Sci. 34, 3–16 (1998). https://doi.org/10.1016/S1365-1609(97)80029-9

    Article  Google Scholar 

  28. Morgan, S.P., Einstein, H.H.: Cracking processes affected by bedding planes in opalinus shale with flaw pairs. Eng. Fract. Mech. 176, 213–234 (2017). https://doi.org/10.1016/j.engfracmech.2017.03.003

    Article  Google Scholar 

  29. Choens, R.C., Lee, M.Y., Ingraham, M.D., Dewers, T.A., Herrick, C.G.: Experimental studies of anisotropy on borehole breakouts in mancos shale. J. Geophys. Res.: Solid Earth. 124, 4119–4141 (2019). https://doi.org/10.1029/2018jb017090

    Article  Google Scholar 

  30. Zhang, X., Li, X.S., Liu, Y.H., Liu, W., Li, Q.H., et al.: Experimental study on crack propagation and failure mode of fissured shale under uniaxial compression. Theor. Appl. Fract. Mech. (2022). https://doi.org/10.1016/j.tafmec.2022.103512

    Article  Google Scholar 

  31. Chen, T.Y., Feng, X.T., Zhang, X.W., Cao, W.D., Fu, C.J.: Experimental study on mechanical and anisotropic properties of black shale. Chin. J. Rock Mech. Eng. 33, 1772–1779 (2014). https://doi.org/10.13722/j.cnki.jrme.2014.09.006

    Article  Google Scholar 

  32. Zhou, X.P., Zhang, J.Z., Qian, Q.H., Niu, Y.: Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and ae techniques. J. Struct. Geol. 126, 129–145 (2019). https://doi.org/10.1016/j.jsg.2019.06.003

    Article  Google Scholar 

  33. Zhang, L.M., Cong, Y., Meng, F.Z., Wang, Z.Q., Zhang, P., et al.: Energy evolution analysis and failure criteria for rock under different stress paths. Acta Geotech. 16, 569–580 (2020). https://doi.org/10.1007/s11440-020-01028-1

    Article  Google Scholar 

  34. Liu, J., Zhang, L.M., Cong, Y., Wang, Z.Q.: Research on the mechanical characteristics of granite failure process in true triaxial stress path. Rock Soil Mech. 42, 2069–2077 (2021). https://doi.org/10.16285/j.rsm.2021.0110

    Article  Google Scholar 

  35. Li, C.B., Xie, H.P., Xie, L.Z.: Experimental and theoretical study on the shale crack initiation stress and crack damage stress. J. China Coal Soc. 42, 969–976 (2017). https://doi.org/10.13225/j.cnki.jccs.2015.1472

    Article  Google Scholar 

  36. Eberhardt, E., Stead, D., Stimpson, B.: Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int. J. Rock Mech. Min. Sci. 36, 361–380 (1999). https://doi.org/10.1016/S0148-9062(99)00019-4

    Article  Google Scholar 

  37. Du, Y.T., Li, T.C., Wang, B.X., Zhang, S.L., Li, H., et al.: Experimental study on mechanical characteristics and permeability evolution during the coupled hydromechanical failure of sandstone containing a filled fissure. Acta Geotech. (2023). https://doi.org/10.1007/s11440-023-01816-5

    Article  Google Scholar 

  38. Xu, R.C., Zhang, S.Z., Li, Z., Yan, X.M.: Experimental investigation of the strain rate effect on crack initiation and crack damage thresholds of hard rock under quasi-static compression. Acta Geotech. 18, 903–920 (2022). https://doi.org/10.1007/s11440-022-01631-4

    Article  Google Scholar 

  39. Martin, C.D., Chandler, N.A.: The progressive fracture of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci. 31, 643–659 (1994). https://doi.org/10.1016/0148-9062(94)90005-1

    Article  Google Scholar 

  40. Li, C.B., Xie, H.P., Wang, J.: Anisotropic characteristics of crack initiation and crack damage thresholds for shale. Int. J. Rock Mech. Min. Sci. (2020). https://doi.org/10.1016/j.ijrmms.2019.104178

    Article  Google Scholar 

  41. Kang, G., Ning, Y.J., Chen, P.W., Pang, S.P., Shao, Y.B.: Comprehensive simulations of rock fracturing with pre-existing cracks by the numerical manifold method. Acta Geotech. 17, 857–876 (2021). https://doi.org/10.1007/s11440-021-01252-3

    Article  Google Scholar 

  42. Zhang, L., Zhang, Z.J., Chen, Y., Dai, B., Wang, B.: Crack development and damage patterns under combined dynamic-static loading of parallel double fractured rocks based on DIC technique. Acta Geotech. 18, 877–901 (2022). https://doi.org/10.1007/s11440-022-01595-5

    Article  Google Scholar 

  43. Zhao, Y.S., Gao, Y.T., Wu, S.C., Chen, L., Zhang, C.L.: Experimental and numerical study of failure characteristics of brittle rocks with single internal 3d open-type flaw. Acta Geotech. 16, 3087–3113 (2021). https://doi.org/10.1007/s11440-021-01285-8

    Article  Google Scholar 

  44. Li, Z.L., Wang, L.G., Jiang, C.Y., Lu, Y.L., Lu, W.S.: Three-dimensional fracture evolution patterns of rocks under true triaxial conditions based on real-time CT scanning. J. China Coal Soc. 46, 937–949 (2021). https://doi.org/10.13225/j.cnki.jccs.YT20.1964

    Article  Google Scholar 

  45. Rahjoo, M., Eberhardt, E.: Development of a 3-D confinement-dependent dilation model for brittle rocks; Part 1, derivation of a cartesian plastic strain increments ratios approach for non-potential flow rules. Int. J. Rock Mech. Min. Sci. (2021). https://doi.org/10.1016/j.ijrmms.2021.104668

    Article  Google Scholar 

  46. Zhang, X.P., Wong, L.N.Y.: Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mech Rock Eng. 46, 1001–1021 (2012). https://doi.org/10.1007/s00603-012-0323-1

    Article  Google Scholar 

  47. Lin, Q.B., Cao, P., Wen, G.P., Meng, J.J., Cao, R.H., et al.: Crack coalescence in rock-like specimens with two dissimilar layers and pre-existing double parallel joints under uniaxial compression. Int. J. Rock Mech. Min. Sci. (2021). https://doi.org/10.1016/j.ijrmms.2021.104621

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 52109124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Long.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Gong, J., Long, Y. et al. Experimental investigations on mechanical and failure behaviors of transversely isotropic shale containing twin fissures under true triaxial stresses. Arch Appl Mech 93, 3205–3228 (2023). https://doi.org/10.1007/s00419-023-02433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02433-0

Keywords

Navigation