Skip to main content
Log in

A modified star-shaped phononic crystal for the vibration wave filtration in plates: design and experiment

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the present paper, an auxetic tape composed of modified star-shaped unit cells is used to filter the propagation of elastic waves in two-dimensional structures. The pattern of the designed bandgaps and their capability to mitigate wave propagation is experimentally and numerically studied. First, the architecture of the conventional star-shaped unit cell is introduced, and according to the Bloch’s theorem the phononic bandgaps are calculated for the one unit cell. The unit cells' dimensions are designed to provide a wide phononic bandgap over the low-frequency range of 400–1700 Hz. The geometry of the conventional star unit cell is modified toward two modified stars to enhance low-frequency bandgaps. These unit cells are then used as a filter tool in a two-dimensional panel, and they are numerically simulated using the finite element method. Excitation is locally applied to the panel, and a layer of phononic crystal surrounds its location. It is shown that the lattice band is capable of trapping waves inside the bounded area and can remarkably suppress the propagation of waves. Numerical results and the bandgap formation obtained from Bloch’s theorem are verified with the results measured from an experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wani, Z.R., Tantray, M., Noroozinejad Farsangi, E., Nikitas, N., Noori, M., Samali, B., Yang, T.Y.: A critical review on control strategies for structural vibration control. Annu. Rev. Control. 54, 103–124 (2022). https://doi.org/10.1016/J.ARCONTROL.2022.09.002

    Article  MathSciNet  Google Scholar 

  2. Pablo, A.-S.J., Dominguez-Gonzalez, A., Sedaghati, R., De Romero-Troncoso, R., Roque, J., Osornio-Rios, A., Osornio, A., Amezquita-Sanchez, J.P.: Vibration control on smart civil structures: a review. Science 21, 23–38 (2013)

    Google Scholar 

  3. Balaji, P.S., Karthik, S.K.K.: Applications of nonlinearity in passive vibration control: a review. J. Vib. Eng. Technol. 9, 183–213 (2020). https://doi.org/10.1007/S42417-020-00216-3

    Article  Google Scholar 

  4. Rahimi, F., Aghayari, R., Samali, B.: Application of tuned mass dampers for structural vibration control: a state-of-the-art review. Civil Eng. J. 6, 1622–1651 (2020)

    Article  Google Scholar 

  5. Dai, H., Zhang, X., Zheng, Y., Pei, W., Zhou, R., Liu, R., Gong, Y.: Review and prospects of metamaterials used to control elastic waves and vibrations. Front. Phys. 10, 1179 (2022). https://doi.org/10.3389/FPHY.2022.1069454/BIBTEX

    Article  Google Scholar 

  6. Jia, Z., Chen, Y., Yang, H., Wang, L.: Designing phononic crystals with wide and robust band gaps. Phys. Rev. Appl. 9, 044021 (2018). https://doi.org/10.1103/PhysRevApplied.9.044021

    Article  Google Scholar 

  7. Kaina, N., Fink, M., Lerosey, G.: Composite media mixing Bragg and local resonances for highly attenuating and broad bandgaps. Sci. Rep. 3, 1–7 (2013). https://doi.org/10.1038/srep03240

    Article  Google Scholar 

  8. Wang, P., Yi, Q., Zhao, C., Xing, M., Tang, J.: Wave propagation in periodic track structures: band-gap behaviours and formation mechanisms. Arch. Appl. Mech. (2017). https://doi.org/10.1007/s00419-016-1207-8

    Article  Google Scholar 

  9. Liang, F., Chen, Y., Zhao, Y., Qian, Y.: Natural property and vibration suppression of fluid-conveying phononic crystal pipes with axial periodic composites based on Timoshenko beam model. Arch. Appl. Mech. 92, 3093–3108 (2022). https://doi.org/10.1007/S00419-022-02220-3

    Article  Google Scholar 

  10. Liang, F., Qian, Y., Chen, Y.: Wave motion of spinning periodically multi-stepped pipes-dynamics of a novel motional 2D phononic crystal structure. Thin-Walled Struct. 180, 109922 (2022). https://doi.org/10.1016/J.TWS.2022.109922

    Article  Google Scholar 

  11. Yu, H., Liang, F., Qian, Y., Gong, J., Chen, Y., Gao, A.: Phononic band gap and free vibration analysis of fluid-conveying pipes with periodically varying cross-section. Appl. Sci. (2021). https://doi.org/10.3390/app112110485

    Article  Google Scholar 

  12. Panahi, E., Hosseinkhani, A., Khansanami, M.F., Younesian, D., Ranjbar, M.: Novel cross shape phononic crystals with broadband vibration wave attenuation characteristic: design, modeling and testing. Thin-Walled Struct. (2021). https://doi.org/10.1016/j.tws.2021.107665

    Article  Google Scholar 

  13. Kaçın, S., Öztürk, M., Sevim, U.K., Karaaslan, M., Özer, Z., Akgöl, O., Mert, B.A., Ünal, E.: Experimental verification of phononic crystal based on square arrays of cylindrical holes against seismic vibrations in full-scale systems: modeling, sensing and signal processing of seismic vibrations. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-021-02057-2

    Article  Google Scholar 

  14. Krushynska, A.O., Anerao, N., Badillo-Ávila, M.A., Stokroos, M., Acuautla, M.: Arbitrary-curved waveguiding and broadband attenuation in additively manufactured lattice phononic media. Mater. Des. (2021). https://doi.org/10.1016/j.matdes.2021.109714

    Article  Google Scholar 

  15. Hosseinkhani, A., Younesian, D., Krushynska, A.O., Ranjbar, M., Scarpa, F.: Full-gradient optimization of the vibroacoustic performance of (non-) auxetic sandwich panels. Transp. Porous Media. (2021). https://doi.org/10.1007/s11242-021-01693-0

    Article  Google Scholar 

  16. Krushynska, A.O., Galich, P., Bosia, F., Pugno, N.M., Rudykh, S.: Hybrid metamaterials combining pentamode lattices and phononic plates. Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5052161

    Article  Google Scholar 

  17. Krushynska, A.O., Bosia, F., Pugno, N.M.: Labyrinthine acoustic metamaterials with space-coiling channels for low-frequency sound control. Acta Acustica United Acustica. (2018). https://doi.org/10.3813/AAA.919161

    Article  Google Scholar 

  18. Krushynska, A.O., Amendola, A., Bosia, F., Daraio, C., Pugno, N.M., Fraternali, F.: Accordion-like metamaterials with tunable ultra-wide low-frequency band gaps. New J. Phys. (2018). https://doi.org/10.1088/1367-2630/aad354

    Article  Google Scholar 

  19. Mazloomi, M.S., Ranjbar, M.: Hybrid design optimization of sandwich panels with gradient shape anti-tetrachiral auxetic core for vibroacoustic applications. Transp. Porous Media. (2022). https://doi.org/10.1007/s11242-021-01646-7

    Article  Google Scholar 

  20. Panahi, E., Hosseinkhani, A., Frangi, A., Younesian, D., Zega, V.: A novel low-frequency multi-bandgaps metaplate: genetic algorithm based optimization and experimental validation. Mech. Syst. Signal Process. 181, 109495 (2022). https://doi.org/10.1016/J.YMSSP.2022.109495

    Article  Google Scholar 

  21. Panahi, E., Hosseinkhani, A., Younesian, D., Moayedizadeh, A.: A new circular-maze-shaped phononic crystal with multiband and broadband vibration filtration feature: design and experiment. Acta Mech. (2022). https://doi.org/10.1007/s00707-022-03357-6

    Article  MATH  Google Scholar 

  22. Lu, J.F., Huang, Y.J.: The plane wave finite element method for the wave scattering by a 2-D phononic crystal. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-021-02102-0

    Article  Google Scholar 

  23. Mazloomi, M.S., Ranjbar, M., Boldrin, L., Scarpa, F., Patsias, S., Ozada, N.: Vibroacoustics of 2D gradient auxetic hexagonal honeycomb sandwich panels. Compos. Struct. 187, 593–603 (2018). https://doi.org/10.1016/j.compstruct.2017.10.077

    Article  Google Scholar 

  24. Li, Y., Deng, Z., Yan, G., Gao, G.: Wave propagation in two-dimensional elastic metastructures with triangular configuration. Thin-Walled Struct. 181, 110043 (2022). https://doi.org/10.1016/J.TWS.2022.110043

    Article  Google Scholar 

  25. Ha, T.D.: A wide band gap phononic crystal strip for quality factor improvement in a length extensional mode MEMS resonator. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-022-02125-1

    Article  Google Scholar 

  26. Sigalas, M., Economou, E.N.: Band structure of elastic waves in two dimensional systems. Solid State Commun. (1993). https://doi.org/10.1016/0038-1098(93)90888-T

    Article  Google Scholar 

  27. Martínez-Sala, R., Sancho, J., Sánchez, J.V., Gómez, V., Llinares, J., Meseguer, F.: Sound attenuation by sculpture. Nature. 378, 558 (1995)

    Article  Google Scholar 

  28. Ruzzene, M., Scarpa, F., Soranna, F.: Wave beaming effects in two-dimensional cellular structures. Smart Mater. Struct. 12, 363 (2003)

    Article  Google Scholar 

  29. Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119, 1995–2005 (2006). https://doi.org/10.1121/1.2179748

    Article  Google Scholar 

  30. Spadoni, A., Ruzzene, M., Gonella, S., Scarpa, F.: Phononic properties of hexagonal chiral lattices. Wave Motion 46, 435–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. (2011). https://doi.org/10.1016/j.jsv.2010.12.014

    Article  Google Scholar 

  32. Chen, Y., Li, T., Scarpa, F., Wang, L.: Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control. Phys. Rev. Appl. 7, 024012 (2017). https://doi.org/10.1103/PhysRevApplied.7.024012

    Article  Google Scholar 

  33. D’Alessandro, L., Ardito, R., Braghin, F., Corigliano, A.: Low frequency 3D ultra-wide vibration attenuation via elastic metamaterial. Sci. Rep. 9, 1–8 (2019). https://doi.org/10.1038/s41598-019-44507-6

    Article  Google Scholar 

  34. D’Alessandro, L., Zega, V., Ardito, R., Corigliano, A.: 3D auxetic single material periodic structure with ultra-wide tunable bandgap. Sci. Rep. 8, 2262 (2018)

    Article  Google Scholar 

  35. Shao, H., Chen, G., He, H., Jiang, J.: Simulation and experimental investigation of low-frequency vibration reduction of honeycomb phononic crystals. Chin. Phys. 8, 27–12 (2018)

    Google Scholar 

  36. Dong, H.W., Su, X.X., Wang, Y.S., Zhang, C.: Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Struct. Multidiscip Optim. (2014). https://doi.org/10.1007/s00158-014-1070-6

    Article  MathSciNet  Google Scholar 

  37. Li, Y., Huang, X., Zhou, S.: Topological design of cellular phononic band gap crystals. Materials. 9, 186 (2016). https://doi.org/10.3390/ma9030186

    Article  Google Scholar 

  38. Meng, J., Deng, Z., Zhang, K., Xu, X., Wen, F.: Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio. Smart Mater. Struct. 24, 095011 (2015). https://doi.org/10.1088/0964-1726/24/9/095011

    Article  Google Scholar 

  39. Chang, S.-Y., Chen, C.-D., Yeh, J.-Y., Chen, L.-W.: Elastic wave propagation of two-dimensional metamaterials composed of auxetic star-shaped honeycomb structures. Crystals (Basel). 9, 121 (2019). https://doi.org/10.3390/cryst9030121

    Article  Google Scholar 

  40. Koutsianitis, P.I., Tairidis, G.K., Drosopoulos, G.A., Stavroulakis, G.E.: Conventional and star-shaped auxetic materials for the creation of band gaps. Arch. Appl. Mech. 89, 2545–2562 (2019). https://doi.org/10.1007/s00419-019-01594-1

    Article  Google Scholar 

  41. Tang, H.W., Chou, W.D., Chen, L.W.: Wave propagation in the polymer-filled star-shaped honeycomb periodic structure. Appl. Phys. A Mater. Sci. Process. 123, 1–8 (2017). https://doi.org/10.1007/s00339-017-1124-x

    Article  Google Scholar 

  42. Timorian, S., Ouisse, M., Bouhaddi, N., De Rosa, S., Franco, F.: Numerical investigations and experimental measurements on the structural dynamic behaviour of quasi-periodic meta-materials. Mech. Syst. Signal Process. (2020). https://doi.org/10.1016/j.ymssp.2019.106516

    Article  Google Scholar 

  43. Chen, M., Xu, W., Liu, Y., Yan, K., Jiang, H., Wang, Y.: Band gap and double-negative properties of a star-structured sonic metamaterial. Appl. Acoust. (2018). https://doi.org/10.1016/j.apacoust.2018.04.035

    Article  Google Scholar 

  44. Chen, M., Jiang, H., Zhang, H., Li, D., Wang, Y.: Design of an acoustic superlens using single-phase metamaterials with a star-shaped lattice structure. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-19374-2

    Article  Google Scholar 

  45. Kumar, N., Pal, S.: Low frequency and wide band gap metamaterial with divergent shaped star units: numerical and experimental investigations. Appl. Phys. Lett. 115, 8885 (2019)

    Article  Google Scholar 

  46. Morvan, B., Tinel, A., Hladky-Hennion, A.C., Vasseur, J., Dubus, B.: Experimental demonstration of the negative refraction of a transverse elastic wave in a two-dimensional solid phononic crystal. Appl. Phys. Lett. 96, 101905 (2010)

    Article  Google Scholar 

  47. Miniaci, M., Pal, R.K., Morvan, B., Ruzzene, M.: Experimental observation of topologically protected helical edge modes in patterned elastic plates. Phys. Rev. X. 8, 031074 (2018)

    Google Scholar 

  48. Patil, G.U., Shedge, A.B., Matlack, K.H.: 3D auxetic lattice materials for anomalous elastic wave polarization. Appl. Phys. Lett. 115, 091902 (2019)

    Article  Google Scholar 

  49. Patil, G.U., Matlack, K.H.: Wave self-interactions in continuum phononic materials with periodic contact nonlinearity. Wave Motion. 105, 102763 (2021). https://doi.org/10.1016/J.WAVEMOTI.2021.102763

    Article  MathSciNet  MATH  Google Scholar 

  50. Patil, G.U., Matlack, K.H.: Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mechanica 233, 1–46 (2021). https://doi.org/10.1007/S00707-021-03089-Z

    Article  MathSciNet  MATH  Google Scholar 

  51. Kurosu, M., Hatanaka, D., Yamaguchi, H.: Mechanical kerr nonlinearity of wave propagation in an on-chip nanoelectromechanical waveguide. Phys. Rev. Appl. 13, 014056 (2020)

    Article  Google Scholar 

  52. Zhang, Q., Umnova, O., Venegas, R.: Nonlinear dynamics of coupled transverse-rotational waves in granular chains. Phys. Rev. E. 100, 062206 (2019)

    Article  Google Scholar 

  53. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science (2000). https://doi.org/10.1126/science.289.5485.1734

    Article  Google Scholar 

  54. Wang, G., Yu, D., Wen, J., Liu, Y., Wen, X.: One-dimensional phononic crystals with locally resonant structures. Phys. Lett. 327, 512–521 (2004). https://doi.org/10.1016/j.physleta.2004.05.047

    Article  MATH  Google Scholar 

  55. Wu, Z., Liu, W., Li, F., Zhang, C.: Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators. Mech. Syst. Signal Process. 134, 106357 (2019). https://doi.org/10.1016/j.ymssp.2019.106357

    Article  Google Scholar 

  56. Miranda, E.J.P., Nobrega, E.D., Ferreira, A.H.R., Dos Santos, J.M.C.: Flexural wave band gaps in a multi-resonator elastic metamaterial plate using Kirchhoff-Love theory. Mech. Syst. Signal Process. 116, 480–504 (2019). https://doi.org/10.1016/j.ymssp.2018.06.059

    Article  Google Scholar 

  57. Hwang, M., Arrieta, A.F.: Input-independent energy harvesting in bistable lattices from transition waves. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-22003-7

    Article  Google Scholar 

  58. Chen, A.L., Wang, Y.S.: Study on band gaps of elastic waves propagating in one-dimensional disordered phononic crystals. Physica B Condens Matter. 392, 369–378 (2007). https://doi.org/10.1016/j.physb.2006.12.004

    Article  Google Scholar 

  59. Gkantzounis, G., Amoah, T., Florescu, M.: Hyperuniform disordered phononic structures. Phys. Rev. B. 95, 094120 (2017). https://doi.org/10.1103/PhysRevB.95.094120

    Article  Google Scholar 

  60. Zhao, L., Lai, C., Yu, M.: Modified structural Luneburg lens for broadband focusing and collimation. Mech. Syst. Signal Process. 144, 106868 (2020). https://doi.org/10.1016/j.ymssp.2020.106868

    Article  Google Scholar 

  61. Garcia, P.G., Fernández-Álvarez, J.P.: Floquet-Bloch theory and its application to the dispersion curves of nonperiodic layered systems. Math Probl Eng. 2015, 475364 (2015)

    MATH  Google Scholar 

  62. Brillouin, L.: Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. Courier Corporation (1953)

  63. Timorian, S., Ouisse, M., Bouhaddi, N., de Rosa, S., Franco, F.: Numerical investigations and experimental measurements on the structural dynamic behaviour of quasi-periodic meta-materials. Mech. Syst. Signal Process. 136, 106516 (2020). https://doi.org/10.1016/j.ymssp.2019.106516

    Article  Google Scholar 

  64. Elford, D.P., Chalmers, L., Kusmartsev, F.V., Swallowe, G.M.: Matryoshka locally resonant sonic crystal. J. Acoust. Soc. Am. 130, 2746–2755 (2011). https://doi.org/10.1121/1.3643818

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Younesian.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinkhani, A., Panahi, E., Khansanami, M.F. et al. A modified star-shaped phononic crystal for the vibration wave filtration in plates: design and experiment. Arch Appl Mech 93, 3153–3169 (2023). https://doi.org/10.1007/s00419-023-02430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02430-3

Keywords

Navigation