Skip to main content
Log in

A mathematical formulation for analysis of diffusion-induced stresses in micropolar elastic solids

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper develops a coupled chemo-mechanical model for stress-assisted diffusion in the framework of micropolar elasticity. The two-way interaction of mechanical and chemical driving forces as well as internal microstructure of the polar media is taken into account. The fundamental governing equations of chemo-mechanics with kinetics driven by diffusion and stress are developed, and mathematical expressions for stress and concentration fields are derived. Using Airy stress functions, a simplified formulation for two-dimensional chemo-elasticity problems under chemical equilibrium is presented. Using a perturbation approach to solve the presented system of equations, closed-form expressions for different field parameters can be obtained. As an illustrative case study, expressions for the stress and solute concentration in an infinite plate with circular hole embedded in a chemical medium have been written. The derived equation and proposed solution approach can be applied to various plane micropolar chemo-elasticity problems for studying the interaction between mechanical and chemical driving forces as well as material length-scale parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Parfitt, D., Kordatos, A., Filippatos, P., Chroneos, A.: Diffusion in energy materials: Governing dynamics from atomistic modelling. Appl. Phys. Rev. 4, 031305 (2017)

    Article  Google Scholar 

  2. Shaw, D.: Atomic Diffusion in Semiconductors. Springer, Berlin (2012)

    Google Scholar 

  3. Bonef, B., Shah, R.D., Mukherjee, K.: Fast diffusion and segregation along threading dislocations in semiconductor heterostructures. Nano Lett. 19, 1428–1436 (2019)

    Article  Google Scholar 

  4. Kazakov, N.F.: Diffusion Bonding of Materials. Elsevier, New York (2013)

    Google Scholar 

  5. Köhler, M., Junker, P., Balzani, D.: Continuum multiscale modeling of absorption processes in micro- and nanocatalysts. Arch. Appl. Mech. 92, 2207–2223 (2022)

    Article  Google Scholar 

  6. Wu, C.H.: The role of Eshelby stress in composition-generated and stress-assisted diffusion. J. Mech. Phys. Solids 49, 1771–1794 (2001)

    Article  MATH  Google Scholar 

  7. Yang, F.: Interaction between diffusion and chemical stresses. Mater. Sci. Eng. A 409, 153–159 (2005)

    Article  Google Scholar 

  8. Yamaue, T., Doi, M.: The stress diffusion coupling in the swelling dynamics of cylindrical gels. J. Chem. Phys. 122, 084703 (2005)

    Article  Google Scholar 

  9. Dong, X., Feng, X., Hwang, K.-C.: Stress–diffusion interaction during oxidation at high temperature. Chem. Phys. Lett. 614, 95–98 (2014)

    Article  Google Scholar 

  10. Seo, H.K., Park, J.Y., Chang, J.H., Dae, K.S., Noh, M.-S., Kim, S.-S., et al.: Strong stress-composition coupling in lithium alloy nanoparticles. Nat. Commun. 10, 1–8 (2019)

    Article  Google Scholar 

  11. Wang, X., Li, X., Mei, J., Zhao, K.: Doping kinetics in organic mixed ionic–electronic conductors: Moving front experiments and the stress effect. Extreme Mech. Lett. 54, 101739 (2022)

    Article  Google Scholar 

  12. Peradzyński, Z., Kazmierczak, B.: On mechano-chemical Calcium waves. Arch. Appl. Mech. 74, 827–833 (2005)

    Article  MATH  Google Scholar 

  13. Bahramifar, S., Haftbaradaran, H., Mossaiby, F.: Cohesive modeling of crack formation in two-phase planar electrodes subject to diffusion induced stresses using the distributed dislocation method. Int. J. Mech. Sci. 194, 106183 (2021)

    Article  Google Scholar 

  14. Prussin, S.: Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 32, 1876–1881 (1961)

    Article  Google Scholar 

  15. Podstrigach, Y.S., Pavlina, V.: Differential equations of thermodynamic processes in n-component solid solutions. Soviet Mater. Sci. 1, 259–264 (1966)

    Article  Google Scholar 

  16. Podstrigach, Y.S., Shevchuk, P.: Diffusion phenomena and stress relaxation in the vicinity of a spherical void. Soviet Mater. Sci. 4, 140–145 (1969)

    Article  Google Scholar 

  17. Larché, F., Cahn, J.W.: A linear theory of thermochemical equilibrium of solids under stress. Acta Metall. 21, 1051–1063 (1973)

    Article  Google Scholar 

  18. Larcht’e, F., Cahn, J.: The effect of self-stress on diffusion in solids. Acta Metall. 30, 1835–1845 (1982)

    Article  Google Scholar 

  19. Larche, F., Cahn, J.W.: The interactions of composition and stress in crystalline solids. J. Res. Natl. Bur. Stand. 89, 467 (1984)

    Article  Google Scholar 

  20. Swaminathan, N., Qu, J., Sun, Y.: An electrochemomechanical theory of defects in ionic solids. I. Theory. Phil. Mag. 87, 1705–1721 (2007)

    Article  Google Scholar 

  21. Swaminathan, N., Qu, J.: Interactions between non-stoichiometric stresses and defect transport in a tubular electrolyte. Fuel Cells 7, 453–462 (2007)

    Article  Google Scholar 

  22. Suo, Y., Shen, S.: Coupling diffusion–reaction–mechanics model for oxidation. Acta Mech. 226, 3375–3386 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, H., Suo, Y., Shen, S.: Reaction–diffusion–stress coupling effect in inelastic oxide scale during oxidation. Oxid. Met. 83, 507–519 (2015)

    Article  Google Scholar 

  24. Qin, B., Zhong, Z.: A theoretical model for thermo-chemo-mechanically coupled problems considering plastic flow at large deformation and its application to metal oxidation. Int. J. Solids Struct. 212, 107–123 (2021)

    Article  Google Scholar 

  25. Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels. J. Mech. Phys. Solids 59, 1978–2006 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zheng, S., Li, Z., Liu, Z.: The fast homogeneous diffusion of hydrogel under different stimuli. Int. J. Mech. Sci. 137, 263–270 (2018)

    Article  Google Scholar 

  27. Li, Y., Zhang, K., Zheng, B., Yang, F.: Effect of local deformation on the coupling between diffusion and stress in lithium-ion battery. Int. J. Solids Struct. 87, 81–89 (2016)

    Article  Google Scholar 

  28. Qin, B., Zhong, Z.: A diffusion–reaction–deformation coupling model for lithiation of silicon electrodes considering plastic flow at large deformation. Arch. Appl. Mech. 91, 2713–2733 (2021)

    Article  Google Scholar 

  29. Haftbaradaran, H., Qu, J.: Two-dimensional chemo-elasticity under chemical equilibrium. Int. J. Solids Struct. 56, 126–135 (2015)

    Article  Google Scholar 

  30. Chen, Z., Zhu, Y., Wang, Q., Liu, W., Cui, Y., Tao, X., et al.: Fibrous phosphorus: a promising candidate as anode for lithium-ion batteries. Electrochim. Acta 295, 230–236 (2019)

    Article  Google Scholar 

  31. Lee, J.: Surface-engineered flexible fibrous supercapacitor electrode for improved electrochemical performance. Appl. Surf. Sci. 539, 148290 (2021)

    Article  Google Scholar 

  32. Ricoeur, A., Lange, S.: Constitutive modeling of polycrystalline multiconstituent and multiphase ferroic materials based on a condensed approach. Arch. Appl. Mech. 89, 973–994 (2019)

    Article  Google Scholar 

  33. Jamkhande, P.G., Ghule, N.W., Bamer, A.H., Kalaskar, M.G.: Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53, 101174 (2019)

    Article  Google Scholar 

  34. Liang, Y., Lai, W.H., Miao, Z., Chou, S.L.: Nanocomposite materials for the sodium–ion battery: a review. Small 14, 1702514 (2018)

    Article  Google Scholar 

  35. Akinwande, D., Brennan, C.J., Bunch, J.S., Egberts, P., Felts, J.R., Gao, H., et al.: A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extreme Mech. Lett. 13, 42–77 (2017)

    Article  Google Scholar 

  36. Sun, L., Wang, X., Wang, Y., Zhang, Q.: Roles of carbon nanotubes in novel energy storage devices. Carbon 122, 462–474 (2017)

    Article  Google Scholar 

  37. Hui, F., Shi, Y., Ji, Y., Lanza, M., Duan, H.: Mechanical properties of locally oxidized graphene electrodes. Arch. Appl. Mech. 85, 339–345 (2015)

    Article  Google Scholar 

  38. Ghavanloo, E., Fazelzadeh, S.A., Trovalusci, P.: Mechanics of size-dependent materials. Arch. Appl. Mech. 93, 1–3 (2023)

    Article  Google Scholar 

  39. Cosserat, E., Cosserat, F.: Theory of Deformable Bodies, Scientific Library. a Hermann and Sons, Paris (1909)

    MATH  Google Scholar 

  40. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 909–923 (1966)

  41. Eringen, A.C.: Mechanics of micromorphic continua. In: Mechanics of Generalized Continua: Proceedings of the IUTAM-Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany) , pp 18–35 (1967, 1968)

  42. Rizzi, G., Hütter, G., Madeo, A., Neff, P.: Analytical solutions of the simple shear problem for micromorphic models and other generalized continua. Arch. Appl. Mech. 91, 2237–2254 (2021)

    Article  Google Scholar 

  43. Mindlin, R., Tiersten, H.: Effects of Couple-Stresses in Linear Elasticity. Columbia Univ, New York (1962)

    Book  Google Scholar 

  44. Toupin, R.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  45. Garg, N., Han, C.-S.: Axisymmetric couple stress elasticity and its finite element formulation with penalty terms. Arch. Appl. Mech. 85, 587–600 (2015)

    Article  MATH  Google Scholar 

  46. Aouadi, M.: The coupled theory of micropolar thermoelastic diffusion. Acta Mech. 208, 181–203 (2009)

    Article  MATH  Google Scholar 

  47. Liu, W., Shen, S.: Coupled chemomechanical theory with strain gradient and surface effects. Acta Mech. 229, 133–147 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tsagrakis, I., Aifantis, E.C.: Thermodynamic coupling between gradient elasticity and a Cahn–Hilliard type of diffusion: size-dependent spinodal gaps. Contin. Mech. Thermodyn. 29, 1181–1194 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tsagrakis, I., Aifantis, E.C.: Gradient elasticity effects on the two-phase lithiation of LIB anodes. General. Models Non-Class. Approac. Complex Mater. 2, 221–235 (2018)

    Google Scholar 

  50. Frolova, K., Vilchevskaya, E., Bessonov, N., Müller, W., Polyanskiy, V., Yakovlev, Y.: Application of micropolar theory to the description of the skin effect due to hydrogen saturation. Math. Mech. Solids 27, 1092–1110 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  51. Dyszlewicz, J.: Micropolar Theory of Elasticity, vol. 15. Springer, Berlin (2012)

    MATH  Google Scholar 

  52. Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942)

    Article  Google Scholar 

  53. Huggins, M.L.: Theory of solutions of high polymers1. J. Am. Chem. Soc. 64, 1712–1719 (1942)

    Article  Google Scholar 

  54. Cheng, Z.-Q., He, L.-H.: Micropolar elastic fields due to a spherical inclusion. Int. J. Eng. Sci. 33, 389–397 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  55. Nowacki, W.: The micropolar thermoelasticity. In” Micropolar Elasticity: Symposium Organized by the Department of Mechanics of Solids, June 1972, pp 105–168 (1974)

Download references

Funding

This research has received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Asghari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaeke, H., Asghari, M. A mathematical formulation for analysis of diffusion-induced stresses in micropolar elastic solids. Arch Appl Mech 93, 3093–3111 (2023). https://doi.org/10.1007/s00419-023-02427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02427-y

Keywords

Navigation