Skip to main content
Log in

Experimental modal analysis using undamped control for high damping system

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This study proposes a methodology to identify the modal damping ratio of a highly damped structure. Specifically, we explain the change in the modal damping ratio of the object itself by using an existing novel multiple excitation testing method with velocity feedback (FB) control to counteract the damping force, and we propose a methodology to identify the original modal damping ratio of the object based on the methodology of modal analysis. In this methodology, the relation equation between the modal damping ratio and control gain is derived. In the numerical and experimental validations, the modal damping ratio is identified by applying velocity FB excitation to a multi-degree-of-freedom system, and it is confirmed that the original modal damping ratio of the target structure can be identified from the frequency response function after damping reduction. Therefore, the proposed method is expected to improve experimental modal analysis by facilitating the accurate identification of the modal damping ratios of the vibration mode wherein the resonance peak does not appear clearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(m\) :

Mass

\(c\) :

Viscous damping coefficient

\(k\) :

Spring constant

\(x\) :

Displacement

\(\dot{x}\) :

Velocity

\(\ddot{x}\) :

Acceleration

\(f\) :

External force

\(F\) :

Magnitude of external force

\(\omega\) :

Angular frequency

\(t\) :

Time

\({\omega }_{n}\) :

Natural angular frequency

\(\zeta\) :

Damping ratio

\(\Delta \zeta\) :

Damping reduction parameter

\({\zeta }^{^{\prime}}\) :

Damping ratio after damping reduction

\(u\) :

Velocity feedback excitation force

\(d\) :

Velocity feedback control gain

\(N\) :

Number of degrees of freedom

\(n\) :

Degree of freedom and mode order

\({u}_{n}\) :

Velocity feedback excitation force in n degrees of freedom

\({d}_{n}\) :

Velocity feedback control gain in n degrees of freedom

\(\mathbf{M}\) :

Mass matrix

\(\mathbf{C}\) :

Damping matrix (tridiagonal matrix)

\(\mathbf{K}\) :

Stiffness matrix

\(\mathbf{f}\) :

External force vector

\(\mathbf{x}\) :

Displacement vector

\(\dot{\mathbf{x}}\) :

Velocity vector

\(\ddot{\mathbf{x}}\) :

Acceleration vector

\({\upvarphi}_{n}\) :

n-Th natural vibration mode vector (\(n\)-th mode)

\({\varvec{\Phi}}\) :

Modal matrix

\(\mathbf{I}\) :

Unit matrix

\({\zeta }_{n}\) :

n-Th modal damping ratio (\(n\)-th mode)

\({\zeta }_{n}\mathrm{^{\prime}}\) :

n-Th modal damping ratio after damping reduction

\({\mathbf{C}}_{\mathrm{m}}\) :

Modal damping matrix (diagonal matrix with \({2{\zeta }_{n}\omega }_{n}\))

\({{\varvec{\Omega}}}^{2}\) :

Diagonal matrix with \({\omega }_{n}^{2}\)

\(\mathbf{D}\) :

Diagonal matrix with velocity feedback control gain

\({\mathbf{D}}_{\mathrm{m}}\) :

Modal control gain matrix

\({D}_{nn}\) :

n-Th diagonal component of modal control gain matrix

\(\mathbf{q}\) :

Modal displacement vector

\(\dot{\mathbf{q}}\) :

Modal velocity vector

\(\ddot{\mathbf{q}}\) :

Modal acceleration vector

\(\lambda\) :

Eigenvalue

\(\mathbf{Q}\) :

Eigenvector

\(\mathrm{T}\) :

Symbol for transpose

References

  1. Gajjal, P., Lathkar, G.S.: Fault diagnosis in an optimized rolling bearing using an intelligent approach. Arch. Appl. Mech. 92, 1585–1601 (2022). https://doi.org/10.1007/s00419-022-02134-0

    Article  Google Scholar 

  2. Walker, P.D., Fang, Y., Zhang, N.: Dynamics and control of clutchless automated manual transmissions for electric vehicles. Trans. ASME J. Vib. Acoust. 139(9), 061005 (2017). https://doi.org/10.1115/1.4036928

    Article  Google Scholar 

  3. Sonnenburg, R., Stretz, A.: Damper modules with adapted stiffness ratio. Arch. Appl. Mech. 81, 853–862 (2011). https://doi.org/10.1007/s00419-010-0455-2

    Article  MATH  Google Scholar 

  4. Schmid, D., Gräbner, N., Wagner, V.U.: Friction-induced noise in drum brakes: finite-element modeling and experiments with special focus on damping. Arch. Appl. Mech. 92, 2467–2481 (2022). https://doi.org/10.1007/s00419-022-02189-z

    Article  Google Scholar 

  5. Rigaud, E., Cornuault, P.H., Bazin, B., et al.: Numerical and experimental analysis of the vibroacoustic behavior of an electric window-lift gear motor. Arch. Appl. Mech. 88, 1395–1410 (2018). https://doi.org/10.1007/s00419-018-1378-6

    Article  Google Scholar 

  6. Majcherczak, D., Dufrénoy, P.: Dynamic analysis of a disc brake under frictional and thermomechanical internal loading. Arch. Appl. Mech. 75, 497–512 (2006). https://doi.org/10.1007/s00419-005-0431-4

    Article  Google Scholar 

  7. Alobaid, F.T., Taheri, S.: Modal analysis of a discrete tire model with a contact patch and rolling conditions using the finite difference method. Dynamic 2, 40–62 (2022). https://doi.org/10.3390/dynamics2020003

    Article  Google Scholar 

  8. Ewins, D.J.: Modal Testing, Theory, Practice, and Application, 2nd edn., pp. 1–23. Research Studies Press Ltd., Hertfordshire (2000)

    Google Scholar 

  9. Fu, Z.F., He, J.: Modal Analysis, pp. 1–10. Butterworth Heinemann, Oxford (2001)

    Google Scholar 

  10. Lyu, L.F., Zhu, W.D.: Operational modal analysis of a rotating structure subject to random excitation using a tracking continuously scanning laser Doppler vibrometer via an improved demodulation method. Trans. ASME J. Vib. Acoust. 144(1), 011006 (2022)

    Article  Google Scholar 

  11. Sakong, H.G., Hur, G., Kim, K.J., Jeon, W.: Modal and forced response analysis of vehicle systems with latent vibration modes due to hydraulic mounts. Trans. ASME J. Vib. Acoust. 142(2), 041010 (2020). https://doi.org/10.1115/1.4046682

    Article  Google Scholar 

  12. Bagheri, M., Jafari, A.: Analytical and experimental modal analysis of nonuniformly ring-stiffened cylindrical shells. Arch. Appl. Mech. 75, 177–191 (2006). https://doi.org/10.1007/s00419-005-0429-y

    Article  MATH  Google Scholar 

  13. Tanaka, T., Kurita, Y., Oura, Y., Nakamura, H.: Measurement of natural vibration of acoustic space by decentralized control using local feedback control. Trans JSME 85(874), 1 (2019). https://doi.org/10.1299/transjsme.18-00449. ((in Japanese))

    Article  Google Scholar 

  14. Matsubara, M., Tanaka, T., Tajiri, D., Kawamura, S.: Vibration testing of tires by multiple excitations coupled with velocity feedback control. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-022-02318-8

    Article  Google Scholar 

  15. Papagiannopoulos, G.A., Beskos, D.E.: On a modal damping identification model of building structures. Arch. Appl. Mech. 76, 443–463 (2006). https://doi.org/10.1007/s00419-006-0046-4

    Article  MATH  Google Scholar 

  16. Lin, C.S.: Ambient modal identification using non-stationary correlation technique. Arch. Appl. Mech. 86, 1449–1464 (2016). https://doi.org/10.1007/s00419-016-1128-6

    Article  Google Scholar 

  17. Lardies, J., Ta, M., Berthillier, M.: Modal parameter estimation based on the wavelet transform of output data. Arch. Appl. Mech. 73, 718–733 (2004). https://doi.org/10.1007/s00419-004-0329-6

    Article  MATH  Google Scholar 

  18. Ong, Z.C., Lim, H.C., Brandt, A., et al.: An inconsistent phase selection assessment for harmonic peaks elimination in operational modal testing. Arch. Appl. Mech. 89, 2415–2430 (2019)

    Article  Google Scholar 

  19. Cao, R., Bolton, J., Black, M.: Force transmission characteristics for a loaded structural-acoustic tire model. SAE Int. J. Passeng. Cars. Mech. Syst. 11(4), 305–319 (2018). https://doi.org/10.4271/06-11-04-0025

    Article  Google Scholar 

  20. Bi, S., Ouisse, M., Foltête, E.: Probabilistic approach for damping identification considering uncertainty in experimental modal analysis. AIAA J. 56(12), 1 (2018). https://doi.org/10.2514/1.J057432

    Article  Google Scholar 

  21. Lin, C.S., Lin, M.H.: System identification from stationary ambient response using wavelet analysis with variable modal scales. Arch. Appl. Mech. 91, 841–858 (2021). https://doi.org/10.1007/s00419-020-01792-2

    Article  Google Scholar 

  22. Mottershead, J.E., Stanway, R.: Identification of nth-power velocity damping. J. Sound Vib. 105(2), 309–319 (1986)

    Article  Google Scholar 

  23. Mottershead, J.E., Lees, A.W., Stanway, R.: A linear, frequency domain filter for parameter identification of vibrating structures. Trans. ASME J. Vib. Acoust. 109(3), 262–269 (1987). https://doi.org/10.1115/1.3269430

    Article  Google Scholar 

  24. Yoshimura, T., Nagamatsu, A.: Research on modal analysis 7th report, Estimation of variance of the frequency response function. Trans. Jap. Soc. Mech. Eng. Series C 54(507), 2514–2521 (1988). ((in Japanese))

    Article  Google Scholar 

  25. Kawamura, S., Kita, M., Matsubara, M., Ise, T.: Study of the effect of specimen size and frequency on the structural damping property of beam. Mech. Eng. J. (2016). https://doi.org/10.1299/mej.16-00446

    Article  Google Scholar 

  26. Matsubara, M., Saito, A., Kawamura, S.: Estimation of modal parameters by using the ratios of imaginary to real parts of frequency response functions. Arch. Appl. Mech. 91, 1179–1191 (2021). https://doi.org/10.1007/s00419-020-01817-w

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Hiroki Nakao, a student at The University of Shiga Prefecture, for assisting with the experiments performed in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki Tajiri.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajiri, D., Tanaka, T., Matsubara, M. et al. Experimental modal analysis using undamped control for high damping system. Arch Appl Mech 93, 2947–2964 (2023). https://doi.org/10.1007/s00419-023-02419-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02419-y

Keywords

Navigation