Skip to main content
Log in

Effect of finite straight segment and oblateness in the restricted 2+2 body problem

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we studied the oblateness and segment-length effect on the dynamics of the restricted 2+2 body problem. It consists of two primaries and two infinitesimal bodies, assuming the bigger primary is an oblate spheroid, and the smaller primary is elongated. The effect of oblateness and segment-length on the equilibrium points are discussed. Variations of equilibrium points of this model compared to the equilibrium points of the classical CRTBP with different parameters are performed. Equilibrium points of some realistic planetary systems, i.e. Jupiter-Amalthea, Pluto-Hydra and Saturn-Prometheus system, are computed. Periodic orbits and their orbital periods are discussed analytically in the Saturn-Prometheus system with binary satellites. Poincaré Surfaces of Section is depicted in the Pluto-Hydra system to elaborate the periodic orbits when the position of one infinitesimal is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The study does not report any data.

References

  1. Yousuf, S., Kishor, R.: Effects of the albedo and disc on the zero velocity curves and linear stability of equilibrium points in the generalized restricted three-body problem. Mon. Not. R. Astron. Soc. 488(2), 1894–1907 (2019)

    Article  Google Scholar 

  2. Ershkov, S., Abouelmagd, E.I., Rachinskaya, A.: A novel type of er3bp introduced for hierarchical configuration with variable angular momentum of secondary planet. Arch. Appl. Mech. 91(11), 4599–4607 (2021)

    Article  Google Scholar 

  3. Ershkov, S., Leshchenko, D., Prosviryakov, E.Y.: A novel type of er3bp introducing Milankovitch cycles or seasonal irradiation processes influencing onto orbit of planet. Arch. Appl. Mech. 93(2), 812–822 (2022)

    Google Scholar 

  4. Ershkov, S., Leshchenko, D., Rachinskaya, A.: Note on the trapped motion in er3bp at the vicinity of barycenter. Arch. Appl. Mech. 91(3), 997–1005 (2021)

    Article  Google Scholar 

  5. Pal, A.K., Abouelmagd, E.I., Kishor, R.: Effect of Moon perturbation on the energy curves and equilibrium points in the Sun-Earth-Moon system. New Astron. 84, 101505 (2021)

    Article  Google Scholar 

  6. Abouelmagd, E.I., Pal, A.K., Guirao, J.L.G.: Analysis of nominal halo orbits in the Sun-Earth system. Arch. Appl. Mech. 91(12), 4751–4763 (2021)

    Article  Google Scholar 

  7. Idrisi, M.J., Ullah, M.S.: Motion around out-of-plane equilibrium points in the frame of restricted six-body problem under radiation pressure. Few-Body Syst. 63(2), 50 (2022)

    Article  Google Scholar 

  8. Bairwa, L.K., Pal, A.K., Kumari, R., Alhowaity, S., Abouelmagd, E.I.: Study of Lagrange Points in the Earth-Moon System with Continuation Fractional Potential. Fractal Fract. 6(6), 321 (2022)

    Article  Google Scholar 

  9. Idrisi, M.J., Eshetie, T., Tilahun, T., Kerebh, M.: Triangular equilibria in R3BP under the consideration of Yukawa correction to Newtonian potential. J. Appl. Math. (2022)

  10. Pal, A., Abouelmagd, E.I.: Dynamical substitutes and energy surfaces in the bicircular sun-earth-moon system. Astron. Lett. 47(5), 331–344 (2021)

    Article  Google Scholar 

  11. Idrisi, M.J., Ullah, M.S.: Central-body square configuration of restricted six-body problem. New Astron. 79, 101381 (2020)

    Article  Google Scholar 

  12. Szebehely, V.: Motion near the equilibrium points. Theory of Orbits

  13. Kishor, R., Kushvah, B.S.: Periodic orbits in the generalized photogravitational chermnykh-like problem with power-law profile. Astrophys. Space Sci. 344(2), 333–346 (2013)

    Article  MATH  Google Scholar 

  14. Burgos-García, J., Delgado, J.: Periodic orbits in the restricted four-body problem with two equal masses. Astrophys. Space Sci. 345(2), 247–263 (2013)

    Article  MATH  Google Scholar 

  15. Henrard, J., Navarro, J.F.: Families of periodic orbits emanating from homoclinic orbits in the restricted problem of three bodies. Celest. Mech. Dyn. Astron. 89(3), 285–304 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kumari, R., Pal, A.K., Bairwa, L.K.: Periodic solution of circular sitnikov restricted four-body problem using multiple scales method. Arch. Appl. Mech. 1–14 (2022)

  17. Idrisi, M.J., Ullah, M.S., Sikkandhar, A.: Effect of perturbations in coriolis and centrifugal forces on libration points in the restricted six-body problem. J. Astronaut. Sci. 68, 4–25 (2021)

    Article  Google Scholar 

  18. Whipple, A.L., Szebehely, V.: The restricted problem of n+ \(\nu \) bodies. Celest. Mech. 32(2), 137–144 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Whipple, A.L.: Equilibrium solutions of the restricted problem of 2+ 2 bodies. Celest. Mech. 33(3), 271–294 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Croustalloudi, M.N., Kalvouridis , T.J.: The restricted 2, International Scholarly Research Notices (2013)

  21. Kalvouridis, T., Mavraganis, A.: Equilibria and stability of the restricted photogravitational problem of 2+ 2 bodies. Astrophys. Space Sci. 226(1), 137–148 (1995)

    Article  MATH  Google Scholar 

  22. Kalvouridis, T.: Parametric dependence of the stationary solutions in the restricted 2+ 2 body problem. Astrophys. Space Sci. 259(1), 77–90 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Robe, H.: A new kind of 3-body problem. Celest. Mech. 16(3), 343–351 (1977)

    Article  MATH  Google Scholar 

  24. Kaur, B., Aggarwal, R.: Robe’s problem: its extension to 2+ 2 bodies. Astrophys. Space Sci. 339(2), 283–294 (2012)

    Article  MATH  Google Scholar 

  25. Kaur, B., Aggarwal, R.: Robe’s restricted problem of 2+ 2 bodies when the bigger primary is a roche ellipsoid. Acta Astronaut. 89, 31–37 (2013)

    Article  Google Scholar 

  26. Kaur, B., Aggarwal, R.: Robe’s restricted problem of 2+ 2 bodies when the bigger primary is a roche ellipsoid and the smaller primary is an oblate body. Astrophys. Space Sci. 349(1), 57–69 (2014)

    Article  Google Scholar 

  27. Aggarwal, R., Kaur, B., Yadav, S.: Robe’s restricted problem of 2+ 2 bodies with a roche ellipsoid-triaxial system. J. Astronaut. Sci. 65(1), 63–81 (2018)

    Article  MATH  Google Scholar 

  28. Aggarwal, R., Kaur, B.: Robe’s restricted problem of 2+ 2 bodies with one of the primaries an oblate body. Astrophys. Space Sci. 352(2), 467–479 (2014)

    Article  Google Scholar 

  29. Mahato, G., Pal, A.K., Alhowaity, S., Abouelmagd, E.I., Kushvah, B.S.: Effect of the planetesimal belt on the dynamics of the restricted problem of 2+ 2 bodies. Appl. Sci. 12(1), 424 (2022)

    Article  Google Scholar 

  30. Riaguas, A., Elipe, A., López-Moratalla, T.: Non-linear stability of the equilibria in the gravity field of a finite straight segment. Celest. Mech. Dyn. Astron. 81(3), 235–248 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jain, R., Sinha, D.: Stability and regions of motion in the restricted three-body problem when both the primaries are finite straight segments. Astrophys. Space Sci. 351(1), 87–100 (2014)

    Article  Google Scholar 

  32. Jain, R., Sinha, D.: Non-linear stability of l 4 in the restricted problem when the primaries are finite straight segments under resonances. Astrophys. Space Sci. 353(1), 73–88 (2014)

    Article  Google Scholar 

  33. Chauhan, S., Kumar, D., Kaur, B.: Restricted three-body problem under the effect of albedo when smaller primary is a finite straight segment. Appl. Appl. Math. 13(2), 37 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Mahato, G., Kushvah, B.S., Pal, A.K., Verma, R.K.: Dynamics of the restricted three-body problem having elongated smaller primary with disc-like structure. Adv. Space Res. 69(9), 3490–3501 (2022)

    Article  Google Scholar 

  35. Kumar, D., Aggarwal, R., Kaur, B.: An insight on the restricted problem of 2+ 2 bodies with straight segment. Astron. Nachr. 341(6–7), 669–683 (2020)

    Article  Google Scholar 

  36. Kumar, D., Aggarwal, R., Kaur, B.: On the perturbed restricted 2+ 2 body problem when the primaries are non-spherical. Few-Body Syst. 62(4), 1–18 (2021)

    Article  Google Scholar 

  37. Arredondo, J.A., Guo, J., Stoica, C., Tamayo, C.: On the restricted three body problem with oblate primaries. Astrophys. Space Sci. 341(2), 315–322 (2012)

    Article  MATH  Google Scholar 

  38. Suraj, M.S., Mittal, A., Arora, M., Aggarwal, R.: Exploring the fractal basins of convergence in the restricted four-body problem with oblateness. Int. J. Non-Linear Mech. 102, 62–71 (2018)

    Article  MATH  Google Scholar 

  39. Kumar, D., Kaur, B., Chauhan, S., Kumar, V.: Robe’s restricted three-body problem when one of the primaries is a finite straight segment. Int. J. Non-Linear Mech. 109, 182–188 (2019)

    Article  Google Scholar 

  40. McCuskey, S.W.: Introduction to celestial mechanics., Reading

  41. Anderson, J.D., Johnson, T.V., Schubert, G., Asmar, S., Jacobson, R.A., Johnston, D., Lau, E.L., Lewis, G., Moore, W.B., Taylor, A., et al.: Amalthea’s density is less than that of water. Science 308(5726), 1291–1293 (2005)

    Article  Google Scholar 

  42. Thomas, P.: Sizes, shapes, and derived properties of the saturnian satellites after the cassini nominal mission. Icarus 208(1), 395–401 (2010)

    Article  Google Scholar 

  43. P. Thomas, J. Burns, L. Rossier, D. Simonelli, J. Veverka, C. Chapman, K. Klaasen, T. Johnson, M. Belton, G. S. S. I. Team: The small inner satellites of jupiter. Icarus 135(1), 360–371 (1998)

    Article  Google Scholar 

  44. Spurgin, G.C.: Periodic orbits in the four body problem with large and small masses. J. Differ. Equ. 249(5), 1131–1144 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. James, J.M.: Celestial Mechanics Notes Set 4: The Circular Restricted Three Body Problem. Florida Atlantic University, Department of Mathematical Sciences

  46. Kumari, R., Kushvah, B.S.: Stability regions of equilibrium points in restricted four-body problem with oblateness effects. Astrophys. Space Sci. 349(2), 693–704 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The first and third author are thankful to DST(SERB) Government of India (Project No.-DST(SERB)/(163)/2016-2017/506/AM). The second author is supported by Enhanced Seed Grant through Endowment Fund Ref: EF/2021-22/QE04-07 from Manipal University Jaipur. The fourth author is financially supported by the Council of Scientific and Industrial Research (CSIR), Govt. of India (File No. 09/085(0126)/2019-EMR-1).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The research in this study was equally contributed by all of the authors.

Corresponding author

Correspondence to Ashok Kumar Pal.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

1.1 A.

\(\tau _{17}\) =\(\tau _{27}\) = \(\tau _{37}\) = \(2n^2\),

\(\tau _{16}\) = \(\tau _{26}\) = \(\tau _{36}\) = \(4n^2 - 12n^2\mu \),

\(\tau _{15}\) = \(\tau _{25}\) = \(\tau _{35}\) = \(2n^2 - 2l^2n^2 - 20n^2\mu + 30n^2\mu ^2\),

\(\tau _{14}\) = \(2(1 - \mu ) + 2\mu - 8n^2\mu + 8l^2n^2\mu + 40n^2\mu ^2 - 40n^2\mu ^3\),

\(\tau _{24}\) = \(2(1 - \mu ) - 2\mu - 8n^2\mu + 8l^2n^2\mu + 40n^2\mu ^2 - 40n^2\mu ^3\),

\(\tau _{34}\) = \(-2(1 - \mu ) - 2\mu - 8n^2\mu + 8l^2n^2\mu + 40n^2\mu ^2 - 40n^2\mu ^3\)

\(\tau _{13}\) = \(4(1 - \mu ) - 8 (1 -\mu )\mu - 8\mu ^2 + 12n^2\mu ^2 - 12\,l^2n^2\mu ^2 - 40n^2\mu ^3 + 30n^2\mu ^4\),

\(\tau _{23}\) = \(4(1 - \mu ) - 8(1 - \mu )\mu + 8\mu ^2 + 12n^2\mu ^2 - 12\,l^2n^2\mu ^2 - 40n^2\mu ^3 + 30n^2\mu ^4\),

\(\tau _{33}\) = \(-4(1 - \mu ) + 8(1 - \mu )\mu + 8\mu ^2 + 12n^2\mu ^2 - 12\,l^2n^2\mu ^2 - 40n^2\mu ^3 + 30n^2\mu ^4\),

\(\tau _{12}\) = \(2(1 -\mu ) + 3A(1 - \mu ) - 2\,l^2 (1 - \mu ) - 12(1 - \mu )\mu + 12 (1 - \mu )\mu ^2 + 12\mu ^3 - 8n^2\mu ^3 + 8\,l^2n^2\mu ^3 + 20n^2\mu ^4 - 12n^2\mu ^5\),

\(\tau _{22}\) = \(2(1 - \mu ) + 3A(1 - \mu ) - 2\,l^2 (1 - \mu ) - 12 (1 - \mu )\mu + 12 (1 - \mu )\mu ^2 - 12 \mu ^3 - 8n^2\mu ^3 + 8\,l^2n^2\mu ^3 + 20n^2\mu ^4 - 12n^2\mu ^5\),

\(\tau _{32}\) = \(-2(1 - \mu ) - 3A(1 - \mu ) + 2\,l^2(1 - \mu ) + 12(1 - \mu )\mu - 12(1 - \mu )\mu ^2 - 12\mu ^3 - 8n^2\mu ^3 + 8\,l^2n^2\mu ^3 + 20n^2\mu ^4 - 12n^2\mu ^5\),

\(\tau _{11}\) = \(6A(1 - \mu ) - 4(1 - \mu )\mu - 6A(1 - \mu )\mu + 4\,l^2 (1 - \mu )\mu + 12(1 - \mu )\mu ^2 - 8(1 -\mu )\mu ^3 - 8\mu ^4 + 2n^2\mu ^4 - 2\,l^2n^2 \mu ^4 - 4n^2\mu ^5 + 2n^2\mu ^6\),

\(\tau _{21}\) = \(6A(1 - \mu ) - 4(1 - \mu )\mu - 6A(1 - \mu )\mu + 4\,l^2 (1 - \mu )\mu + 12(1 - \mu )\mu ^2 - 8(1 - \mu )\mu ^3 + 8\mu ^4+ 2n^2\mu ^4 - 2\,l^2n^2\mu ^4 - 4n^2\mu ^5 + 2n^2\mu ^6\),

\(\tau _{31}\) = \(-6A(1 - \mu ) + 4(1 - \mu )\mu + 6A(1 - \mu )\mu - 4\,l^2(1 - \mu )\mu - 12(1 - \mu )\mu ^2 + 8(1 - \mu )\mu ^3 + 8\mu ^4 + 2n^2\mu ^4 - 2\,l^2n^2\mu ^4 - 4n^2\mu ^5 + 2n^2\mu ^6\),

\(\tau _{10}\) = \(3A(1 - \mu ) - 3Al^2 (1 - \mu ) - 6A(1 - \mu )\mu + 2(1 - \mu )\mu ^2 + 3A(1 - \mu )\mu ^2 - 2\,l^2 (1 - \mu )\mu ^2 - 4(1 - \mu )\mu ^3 + 2(1 - \mu )\mu ^4 + 2\mu ^5\),

\(\tau _{20}\) =\(3A(1 - \mu ) - 3Al^2(1 - \mu ) - 6A(1 - \mu )\mu + 2(1 - \mu )\mu ^2 + 3 A(1 - \mu )\mu ^2 - 2\,l^2(1 - \mu )\mu ^2 - 4(1 - \mu )\mu ^3 + 2(1 - \mu )\mu ^4 - 2\mu ^5\),

\(\tau _{30}\) = \(-3A(1 - \mu ) + 3Al^2 (1 - \mu ) + 6A(1 - \mu )\mu - 2(1 - \mu )u^2 - 3A(1 - \mu )\mu ^2 + 2\,l^2 (1 -\mu )\mu ^2 + 4(1 - \mu )\mu ^3 - 2(1 - \mu )\mu ^4 - 2\mu ^5\).

1.2 B.

\(\Phi _1 = 4\left( 4 + l^2\right) \mu ^2 + 4\left( (2 + 3A)(-1 + \mu ) + 2n^2\right) ^2 + \mu \left[ -(2 + 3A)\left( -8 + 19\,l^2\right) (-1 + \mu ) + 2\left( 8 - 24\mu + l^2(-19 + 5\mu )\right) n^2\right] \),

\(\Phi _2 = 4(2 + 3A)^2 (-1 + \mu )^2 -\left\{ -8 \left( 2 + 9 A) + (46 + 87 A) l^2\right) (-1 + \mu ) \mu + 4 \left( 4 - 3\,l^2\right) \right\} \mu ^2 - 8 (-1 + \mu ) \left\{ -4 + 6 \mu + 3 A (-2 + 5 \mu )\right\} n^2 + 4\mu \left( -8 + l^2 (-7 + 10 \mu )\right) n^2 + 16n^4\),

\(\Psi =3\left[ -4 \left( -4 + l^2\right) \mu ^2 + 4 (2 + 5 A) (-1 + \mu ) \left\{ (2 + 3 A) (-1 + \mu ) + 2 n^2\right\} \right. \)\(\left. \quad - \mu \left\{ \left( -8 (2 + 7 A) + (46 + 105 A) l^2\right) (-1 + \mu ) + 2 (8 + 5\,l^2) n^2\right\} \right] \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R.K., Pal, A.K., Kushvah, B.S. et al. Effect of finite straight segment and oblateness in the restricted 2+2 body problem. Arch Appl Mech 93, 2813–2829 (2023). https://doi.org/10.1007/s00419-023-02409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02409-0

Keywords

Navigation