Skip to main content
Log in

Influences of angular velocity and periodic axial load on the dynamic instability of functionally graded porous cylindrical panels

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This work presents an analytical study on the dynamic instability of rotating functionally graded porous cylindrical panels subjected to periodic axial load under simply supported boundary conditions. Considering the Coriolis acceleration, centrifugal component, and hoop stress, the partial general equations of motion have been derived based on first-order shear deformation theory (FSDT) and by using Hamilton's principle. The excitation frequencies of rotating functionally graded porous cylindrical panels were calculated by substituting all motion equations for the transverse displacement and then applying the Galerkin method to the resulting equation. Numerical results are employed to validate the analytical results and show good agreement. The influences of the porosity distribution method, porosity coefficient, static and dynamic load factors, angular velocity, Coriolis acceleration, initial hoop stress, circumferential wave number, angle of the cylindrical panel, and cylindrical panel dimensions on the dynamic instability of rotating functionally graded porous cylindrical panels were investigated. Some of the important outputs that were reached in this study are that static and dynamic loads increase the width of the instability zone and that the structure is more stable when the porosity moves away from the surface and when the angular velocity increases. In addition, the cylindrical panel has a large frequency when the panel's angle is small (i.e., θ0 = 30°), but it is less sensitive to dynamic load when the angle is large (i.e., θ0 ≥ 100°).Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [specify authors given name] Last name [specify authors last name]. Also, kindly confirm the details in the metadata are correct.Thank you for this inquiry, author names have been given accurately and in the correct sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Betts, C.: Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review. Mater. Sci. Technol. 28, 129–143 (2012). https://doi.org/10.1179/026708311X13135950699290

    Article  Google Scholar 

  2. Lefebvre, L.P., Banhart, J., Dunand, D.C.: Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10, 775–787 (2008). https://doi.org/10.1002/adem.200800241

    Article  Google Scholar 

  3. Jeong, C.H., Kim, H.R., Ha, M.Y., Son, S.W., Lee, J.S., Kim, P.Y.: Numerical investigation of thermal enhancement of plate fin type heat exchanger with creases and holes in construction machinery. Appl. Therm. Eng. 61, 1–16 (2013). https://doi.org/10.1016/j.applthermaleng.2013.07.002

    Article  Google Scholar 

  4. Gao, K., Gao, W., Wu, B., Wu, D., Song, C.: Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales. Thin-Walled Struct. 125, 281–293 (2018). https://doi.org/10.1016/j.tws.2017.12.039

    Article  Google Scholar 

  5. Hemmatnezhad, M., Rahimi, G.H., Ansari, R.: On the free vibrations of grid-stiffened composite cylindrical shells. Acta Mech. 225, 609–623 (2014). https://doi.org/10.1007/s00707-013-0976-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Mirzaei, M., Kiani, Y.: Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels. Compos. Struct. 142, 45–56 (2016). https://doi.org/10.1016/j.compstruct.2015.12.071

    Article  Google Scholar 

  7. Chu, H.-N.: Influence of large amplitudes on flexural vibrations of a thin circular cylindrical shell. J. Aerosp. Sci. 28, 602–609 (1961). https://doi.org/10.2514/8.9113

    Article  MathSciNet  MATH  Google Scholar 

  8. Zohar, A., Aboudi, J.: The free vibrations of a thin circular finite rotating cylinder. International Journal of Mechanical Sciences 15(4), 269–278 (1973).

  9. Soldatos, K. P., Hadjigeorgiou, V. P.: Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels. Journal of sound and vibration 137(3), 369–384 (1990).

  10. Lam, K. Y., Loy, C. T.: Free vibrations of a rotating multi-layered cylindrical shell. International Journal of Solids and Structures 32(5), 647–663 (1995).

  11. Loy, C. T., Lam, K. Y.: Vibrations of rotating thin cylindrical panels. Applied Acoustics 46(4), 327–343 (1995).

  12. Ng, T. Y., Lam, K. Y. , Reddy, J. N.: Parametric resonance of a rotating cylindrical shell subjected to periodic axial loads. Journal of Sound and vibration 214(3), 513-529 (1998).

  13. Ng, T.Y., Lam, K.Y., Liew, K.M., Reddy, J.N.: Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading (n.d.) www.elsevier.com/locate/ijsolstr

  14. Liew, K.M., Ng, T.Y., Zhao, X., Reddy, J.N.: Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells (n.d.) www.elsevier.com/locate/cma.

  15. Pellicano, F., Amabili, M.: Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads. Int. J. Solids Struct. 40, 3229–3251 (2003). https://doi.org/10.1016/S0020-7683(03)00120-3

    Article  MATH  Google Scholar 

  16. Liew, K.M., Yang, J., Wu, Y.F.: Nonlinear vibration of a coating-FGM-substrate cylindrical panel subjected to a temperature gradient. Comput. Methods Appl. Mech. Eng. 195, 1007–1026 (2006). https://doi.org/10.1016/j.cma.2005.04.001

    Article  MATH  Google Scholar 

  17. Liew, K.M., Hu, Y.G., Ng, T.Y., Zhao, X.: Dynamic stability of rotating cylindrical shells subjected to periodic axial loads. Int. J. Solids Struct. 43, 7553–7570 (2006). https://doi.org/10.1016/j.ijsolstr.2006.03.016

    Article  MATH  Google Scholar 

  18. Bich, D.H., Xuan Nguyen, N.: Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations. J. Sound Vib. 331, 5488–5501 (2012). https://doi.org/10.1016/j.jsv.2012.07.024

    Article  Google Scholar 

  19. Xiang, S., Li, G.C., Zhang, W., Yang, M.S.: Natural frequencies of rotating functionally graded cylindrical shells. Appl. Math. Mech. English Ed. 33, 345–356 (2012). https://doi.org/10.1007/s10483-012-1554-6

    Article  MathSciNet  Google Scholar 

  20. Sun, S., Chu, S., Cao, D.: Vibration characteristics of thin rotating cylindrical shells with various boundary conditions. J. Sound Vib. 331, 4170–4186 (2012). https://doi.org/10.1016/j.jsv.2012.04.018

    Article  Google Scholar 

  21. Han, Q., Qin, Z., Zhao, J., Chu, F.: Parametric instability of cylindrical thin shell with periodic rotating speeds. Int. J. Non-Linear. Mech. 57, 201–207 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.08.002

    Article  Google Scholar 

  22. Hosseini-Hashemi, S., Ilkhani, M.R., Fadaee, M.: Accurate natural frequencies and critical speeds of a rotating functionally graded moderately thick cylindrical shell. Int. J. Mech. Sci. 76, 9–20 (2013). https://doi.org/10.1016/j.ijmecsci.2013.08.005

    Article  Google Scholar 

  23. Han, Q., Chu, F.: Parametric resonance of truncated conical shells rotating at periodically varying angular speed. J. Sound Vib. 333, 2866–2884 (2014). https://doi.org/10.1016/j.jsv.2014.02.020

    Article  Google Scholar 

  24. Lei, Z.X., Zhang, L.W., Liew, K.M.: Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method. Compos. Part B Eng. 77, 291–303 (2015). https://doi.org/10.1016/j.compositesb.2015.03.045

    Article  Google Scholar 

  25. Sofiyev, A.H., Kuruoglu, N.: Parametric instability of shear deformable sandwich cylindrical shells containing an FGM core under static and time dependent periodic axial loads. Int. J. Mech. Sci. 101–102, 114–123 (2015). https://doi.org/10.1016/j.ijmecsci.2015.07.025

    Article  Google Scholar 

  26. Sofiyev, A.H.: Influences of shear stresses on the dynamic instability of exponentially graded sandwich cylindrical shells. Compos. Part B Eng. 77, 349–362 (2015). https://doi.org/10.1016/j.compositesb.2015.03.040

    Article  Google Scholar 

  27. Sheng, G.G., Wang, X.: The non-linear vibrations of rotating functionally graded cylindrical shells. Nonlinear Dyn. 87, 1095–1109 (2017). https://doi.org/10.1007/s11071-016-3100-y

    Article  Google Scholar 

  28. Dai, Q., Cao, Q.: Parametric instability of rotating cylindrical shells subjected to periodic axial loads. Int. J. Mech. Sci. 146–147, 1–8 (2018). https://doi.org/10.1016/j.ijmecsci.2018.07.031

    Article  Google Scholar 

  29. Li, X., Du, C.C., Li, Y.H.: Parametric resonance of a FG cylindrical thin shell with periodic rotating angular speeds in thermal environment. Appl. Math. Model. 59, 393–409 (2018). https://doi.org/10.1016/j.apm.2018.01.048

    Article  MathSciNet  MATH  Google Scholar 

  30. Dong, Y.H., Zhu, B., Wang, Y., Li, Y.H., Yang, J.: Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load. J. Sound Vib. 437, 79–96 (2018). https://doi.org/10.1016/j.jsv.2018.08.036

    Article  Google Scholar 

  31. Heydarpour, Y., Malekzadeh, P.: Dynamic stability of rotating FG-CNTRC cylindrical shells under combined static and periodic axial loads. Int. J. Struct. Stab. Dyn. 18, 1850151 (2018). https://doi.org/10.1142/S0219455418501511

    Article  MathSciNet  Google Scholar 

  32. Li, H., Pang, F., Chen, H., Du, Y.: Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method. Compos. Part B Eng. 164, 249–264 (2019). https://doi.org/10.1016/j.compositesb.2018.11.046

    Article  Google Scholar 

  33. Li, X., Li, Y.H., Xie, T.F.: Vibration characteristics of a rotating composite laminated cylindrical shell in subsonic air flow and hygrothermal environment. Int. J. Mech. Sci. 150, 356–368 (2019). https://doi.org/10.1016/j.ijmecsci.2018.10.024

    Article  Google Scholar 

  34. SafarPour, H., Ghanbari, B., Ghadiri, M.: Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell. Appl. Math. Model. 65, 428–442 (2019). https://doi.org/10.1016/j.apm.2018.08.028

    Article  MathSciNet  MATH  Google Scholar 

  35. Dong, Y., Li, X., Gao, K., Li, Y., Yang, J.: Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-05297-8

    Article  MATH  Google Scholar 

  36. Zhao, S., Yang, Z., Kitipornchai, S., Yang, J.: Dynamic instability of functionally graded porous arches reinforced by graphene platelets. Thin-Walled Struct. 147, 106491 (2020). https://doi.org/10.1016/j.tws.2019.106491

    Article  Google Scholar 

  37. Keleshteri, M.M., Jelovica, J.: Nonlinear vibration behavior of functionally graded porous cylindrical panels. Compos. Struct. 239, 112028 (2020). https://doi.org/10.1016/j.compstruct.2020.112028

    Article  Google Scholar 

  38. Dang, X.H., Nguyen, V.L., Tran, M.T., Nguyen Thi, B.P.: Free vibration characteristics of rotating functionally graded porous circular cylindrical shells with different boundary conditions, Iran. J. Sci. Technol. Trans. Mech. Eng. (2020). https://doi.org/10.1007/s40997-020-00413-1

    Article  Google Scholar 

  39. Yang, S.W., Hao, Y.X., Zhang, W., Yang, L., Liu, L.T.: Buckling and free vibration of eccentric rotating CFRP cylindrical shell base on FSDT. Appl. Math. Model. 95, 593–611 (2021). https://doi.org/10.1016/j.apm.2021.02.029

    Article  MathSciNet  MATH  Google Scholar 

  40. Chan, D.Q., Van Hoan, P., Trung, N.T., Hoa, L.K., Huan, D.T.: Nonlinear buckling and post-buckling of imperfect FG porous sandwich cylindrical panels subjected to axial loading under various boundary conditions. Acta Mech. 232, 1163–1179 (2021). https://doi.org/10.1007/s00707-020-02882-6

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, X., Jiang, W.T., Chen, X.C.: Parametric instability of rotating functionally graded graphene reinforced truncated conical shells subjected to both mechanical and thermal loading conditions. Int. J. Struct. Stab. Dyn. (2022). https://doi.org/10.1142/S021945542250067

    Article  MathSciNet  Google Scholar 

  42. Chen, Y., Jin, G., Ye, T., Lee, H.P.: Three-dimensional vibration analysis of rotating pre-twisted cylindrical isotropic and functionally graded shell panels. J. Sound Vib. 517, 116581 (2022)

    Article  Google Scholar 

  43. Van Phu, K., Bich, D.H., Doan, L.X.: Nonlinear dynamic stability of variable thickness FGM cylindrical shells subjected to mechanical load. In: Modern Mechanics and Applications, pp. 506–521. Springer, Singapore (2022)

  44. Quoc, T.H., Van Tham, V., Tu, T.M.: Free vibration of stiffened functionally graded porous cylindrical shell under various boundary conditions. In: Modern Mechanics and Applications, pp. 347–361. Springer, Singapore (2022)

  45. Zaidan, S.M., Hasan, H.M.: Parametric instability of functionally graded porous cylindrical panels under the effect of static and time-dependent axial loads. Vibration 5, 570–584 (2022)

    Article  Google Scholar 

  46. Dong, Y.H., Li, Y.H., Chen, D., Yang, J.: Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos. Part B Eng. 145, 1–13 (2018). https://doi.org/10.1016/j.compositesb.2018.03.009

    Article  Google Scholar 

Download references

Funding

No funding was received from any financial organization to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah M. Zaidan.

Ethics declarations

Conflict of interest

The authors declare that they have no any known financial or non-financial competing interests in any material discussed in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

\(\Gamma_{i,j} \;(i,j = 1,2,3,4,5)\) are parameters and given by:

$$\begin{aligned} \Gamma_{11} & = - \left( {I_{10} \alpha^{2} + I_{30} \frac{{\beta^{2} }}{{R^{2} }} + \frac{1}{4}I_{0} \Omega^{2} \beta^{2} } \right), \\ \Gamma_{12} & = I_{20} \frac{\beta }{R}\alpha + I_{30} \frac{\beta }{R}\alpha - \frac{1}{4}I_{0} \Omega^{2} R\beta \alpha \\ \Gamma_{13} & = I_{20} \frac{\alpha }{R},\quad \Gamma_{14} = - \left( {I_{11} \alpha^{2} + I_{31} \frac{{\beta^{2} }}{{R^{2} }}} \right),\;\;\Gamma_{15} = \left( {I_{21} + I_{31} } \right)\frac{\beta }{R}\alpha \\ \Gamma_{21} & = \Gamma_{12} ,\quad \Gamma_{22} = - \left( {I_{30} \alpha^{2} + I_{10} \frac{{\beta^{2} }}{{R^{2} }} + \frac{1}{4}I_{0} \Omega^{2} R^{2} \alpha^{2} + kI_{30} \frac{1}{{R^{2} }}} \right), \\ \Gamma_{23} & = - \left( {(I_{10} + kI_{30} )\frac{1}{{R^{2} }} + I_{0} \Omega^{2} } \right)\beta \\ \Gamma_{24} & = \left( {I_{21} + I_{31} } \right)\frac{\beta }{R}\alpha ,\quad \Gamma_{25} = - \left( {I_{31} \alpha^{2} + I_{11} \frac{{\beta^{2} }}{{R^{2} }} - I_{1} \Omega^{2} - kI_{30} \frac{1}{{R^{2} }}} \right), \\ \Gamma_{31} & = \Gamma_{13} ,\quad \Gamma_{32} = \Gamma_{23} \\ \Gamma_{33} & = - \left( {I_{10} \frac{1}{{R^{2} }} + kI_{30} \left( {\frac{{\beta^{2} }}{{R^{2} }} + \alpha^{2} } \right) + I_{0} \Omega^{2} (\beta^{2} - 1)} \right), \\ \Gamma_{34} & = \left( {I_{21} \frac{1}{R} - kI_{30} } \right)\alpha ,\quad \Gamma_{35} = \left( { - I_{11} \frac{1}{{R^{2} }} + k\frac{{I_{30} }}{R}} \right)\beta \\ \Gamma_{41} & = \Gamma_{14} ,\quad \Gamma_{42} = \Gamma_{24} ,\quad \Gamma_{43} = \Gamma_{34} , \\ \Gamma_{44} & = - \left( {I_{12} \alpha^{2} + I_{32} \frac{{\beta^{2} }}{{R^{2} }} + kI_{30} } \right),\quad \Gamma_{45} = \left( {I_{22} + I_{32} } \right)\frac{\beta }{R}\alpha \\ \Gamma_{51} & = \Gamma_{15} ,\quad \Gamma_{52} = \Gamma_{25} ,\quad \Gamma_{53} = \Gamma_{35} , \\ \Gamma_{54} & = \Gamma_{45} ,\quad \Gamma_{55} = - \left( {I_{32} \alpha^{2} + I_{12} \frac{{\beta^{2} }}{{R^{2} }} - I_{2} \Omega^{2} + kI_{30} } \right) \\ \end{aligned}$$

Appendix 2

\(D_{i} ,K_{i} ,T_{i} ,H_{i} \;(i = 1,2)\) are defined as:

$$\begin{aligned} D_{1} & = - \frac{1}{{\Gamma_{11} }}\left( {\Gamma_{12} K_{1} + \Gamma_{13} + \Gamma_{14} T_{1} + \Gamma_{15} H_{1} } \right), \\ D_{2} & = - \frac{1}{{\Gamma_{11} }}\left( {\Gamma_{12} K_{2} + \Gamma_{14} T_{2} + \Gamma_{15} H_{2} } \right) \\ K_{1} & = a_{1} + a_{2} T_{1} + a_{3} H_{1} ,\quad K_{2} = a_{4} + a_{2} T_{2} + a_{3} H_{2} , \\ T_{1} & = j_{1} + j_{2} H_{1} ,\quad T_{2} = j_{3} + j_{2} H_{2} \\ H_{1} & = - \frac{{(a_{1} + a_{2} j_{1} )(\Gamma_{11} \Gamma_{52} - \Gamma_{51} \Gamma_{12} ) + j_{1} (\Gamma_{11} \Gamma_{54} - \Gamma_{51} \Gamma_{14} ) + (\Gamma_{11} \Gamma_{53} - \Gamma_{51} \Gamma_{13} )}}{{(a_{3} + a_{2} j_{2} )(\Gamma_{11} \Gamma_{52} - \Gamma_{51} \Gamma_{12} ) + j_{2} (\Gamma_{11} \Gamma_{54} - \Gamma_{51} \Gamma_{14} ) + (\Gamma_{11} \Gamma_{55} - \Gamma_{51} \Gamma_{15} )}} \\ H_{2} & = - \frac{{(a_{4} + a_{2} j_{3} )(\Gamma_{11} \Gamma_{52} - \Gamma_{51} \Gamma_{12} ) + j_{3} (\Gamma_{11} \Gamma_{54} - \Gamma_{51} \Gamma_{14} ) + \Gamma_{11} I_{1} }}{{(a_{3} + a_{2} j_{2} )(\Gamma_{11} \Gamma_{52} - \Gamma_{51} \Gamma_{12} ) + j_{2} (\Gamma_{11} \Gamma_{54} - \Gamma_{51} \Gamma_{14} ) + (\Gamma_{11} \Gamma_{55} - \Gamma_{51} \Gamma_{15} )}} \\ \end{aligned}$$

where

$$\begin{aligned} j_{1} & = - \frac{{a_{1} (\Gamma_{11} \Gamma_{42} - \Gamma_{41} \Gamma_{12} ) + (\Gamma_{11} \Gamma_{43} - \Gamma_{41} \Gamma_{13} )}}{{a_{2} (\Gamma_{11} \Gamma_{42} - \Gamma_{41} \Gamma_{12} ) + (\Gamma_{11} \Gamma_{44} - \Gamma_{41} \Gamma_{14} )}}, \\ j_{2} & = - \frac{{a_{3} (\Gamma_{11} \Gamma_{42} - \Gamma_{41} \Gamma_{12} ) + (\Gamma_{11} \Gamma_{45} - \Gamma_{41} \Gamma_{15} )}}{{a_{2} (\Gamma_{11} \Gamma_{42} - \Gamma_{41} \Gamma_{12} ) + (\Gamma_{11} \Gamma_{44} - \Gamma_{41} \Gamma_{14} )}} \\ j_{3} & = - \frac{{a_{4} (\Gamma_{11} \Gamma_{42} - \Gamma_{41} \Gamma_{12} )}}{{a_{2} (\Gamma_{11} \Gamma_{42} - \Gamma_{41} \Gamma_{12} ) + (\Gamma_{11} \Gamma_{44} - \Gamma_{41} \Gamma_{14} )}}, \\ a_{1} & = - \frac{{\Gamma_{11} \Gamma_{23} - \Gamma_{21} \Gamma_{13} }}{{\Gamma_{11} \Gamma_{22} - \Gamma_{21} \Gamma_{12} }} \\ a_{2} & = - \frac{{\Gamma_{11} \Gamma_{24} - \Gamma_{21} \Gamma_{14} }}{{\Gamma_{11} \Gamma_{22} - \Gamma_{21} \Gamma_{12} }}, \\ a_{3} & = - \frac{{\Gamma_{11} \Gamma_{25} - \Gamma_{21} \Gamma_{15} }}{{\Gamma_{11} \Gamma_{22} - \Gamma_{21} \Gamma_{12} }},\quad a_{4} = - \frac{{\Gamma_{11} I_{0} }}{{\Gamma_{11} \Gamma_{22} - \Gamma_{21} \Gamma_{12} }} \\ \end{aligned}$$

Appendix 3

$$\begin{gathered} C_{1} = I_{0} + 4\Omega^{2} (I_{0} K_{2} + I_{1} H_{2} ) \\ C_{2} = - 2\Omega \left( {I_{0} K_{1} + I_{1} H_{1} + \Gamma_{31} L_{2} + \Gamma_{32} K_{2} + \Gamma_{34} T_{2} + \Gamma_{35} H_{2} } \right) \\ F = - \left( {\Gamma_{31} L_{1} + \Gamma_{32} K_{1} + \Gamma_{33} + \Gamma_{34} T_{1} + \Gamma_{35} H_{1} } \right) \\ \end{gathered}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaidan, S.M., Hasan, H.M. Influences of angular velocity and periodic axial load on the dynamic instability of functionally graded porous cylindrical panels. Arch Appl Mech 93, 2793–2812 (2023). https://doi.org/10.1007/s00419-023-02407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02407-2

Keywords

Navigation