Skip to main content

Advertisement

Log in

Transient response of vibration energy harvester incorporating inertial rotation structure

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The transient response of a vibration energy harvester incorporating an inertial rotation structure is investigated. The inertial rotation structure is used to realize electromagnetic conversion, where the rotational kinetic energy is transformed into electrical energy, as described by the Faraday law. The dynamic effects of such rotation structure on the mechanical system are separated into two parts: the modified inertance and additional damping. The modified inertance changes the system resonant frequency, while the additional damping reflects the mechanical energy dissipation and electric energy generation. The influences of system parameters on the performance of the harvester are analyzed. Under the transient excitation, the output power initially increases and decreases after the peak power. The additional inertance from the inertial rotation structure has a negative role in the vibration energy harvesting. The friction between the rack and gear is also considered, which dissipates the mechanical energy, suppresses the responses, and reduces the output power. The results of the proposed method are compared to those of a Monte Carlo simulation. The coincidence of the theoretical and numerical curves demonstrates the accuracy of the proposed method. These results will guide the design of a vibration energy harvester incorporating an inertial rotation structure for transient energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sezer, N., Koç, M.: A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80, 105567 (2021)

    Article  Google Scholar 

  2. Pan, H., Qi, L., Zhang, Z., Yan, J.: Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review. Appl. Energy 286, 116518 (2021)

    Article  Google Scholar 

  3. Fu, H., Mei, X., Yurchenko, D., Zhou, S., Theodossiades, S., Nakano, K., et al.: Rotational energy harvesting for self-powered sensing. Joule 5, 1074–1118 (2021)

    Article  Google Scholar 

  4. Zhu, P., Ren, X., Qin, W., Zhou, Z.: Improving energy harvesting in a tri-stable piezomagnetoelastic beam with two attractive external magnets subjected to random excitation. Arch. Appl. Mech. 87, 45–57 (2017)

    Article  Google Scholar 

  5. Wang, H., Jasim, A., Chen, X.: Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review. Appl. Energy 212, 1083–1094 (2018)

    Article  Google Scholar 

  6. Tang, L., Yang, Y.: A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl. Phys. Lett. 101, 094102 (2012)

    Article  Google Scholar 

  7. Yen, B.C., Lang, J.H.: A variable-capacitance vibration-to-electric energy harvester. IEEE Trans. Circuits Syst. I Regul. Pap. 53, 288–295 (2006)

    Article  Google Scholar 

  8. Zuo, L., Scully, B., Shestani, J., Zhou, Y.: Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Mater. Struct. 19, 045003 (2010)

    Article  Google Scholar 

  9. Zhao, L.-C., Zou, H.-X., Yan, G., Liu, F.-R., Tan, T., Zhang, W.-M., et al.: A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester. Appl. Energy 239, 735–746 (2019)

    Article  Google Scholar 

  10. Pan, Y., Liu, F., Jiang, R., Tu, Z., Zuo, L.: Modeling and onboard test of an electromagnetic energy harvester for railway cars. Appl. Energy 250, 568–581 (2019)

    Article  Google Scholar 

  11. Munaz, A., Lee, B.-C., Chung, G.-S.: A study of an electromagnetic energy harvester using multi-pole magnet. Sens. Actuators A 201, 134–140 (2013)

    Article  Google Scholar 

  12. Halim, M.A., Cho, H., Park, J.Y.: Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Convers. Manag. 106, 393–404 (2015)

    Article  Google Scholar 

  13. Elvin, N.G., Elvin, A.A.: An experimentally validated electromagnetic energy harvester. J. Sound Vib. 330, 2314–2324 (2011)

    Article  Google Scholar 

  14. Yan, B., Yu, N., Zhang, L., Ma, H., Wu, C., Wang, K., et al.: Scavenging vibrational energy with a novel bistable electromagnetic energy harvester. Smart Mater. Struct. 29, 025022 (2020)

    Article  Google Scholar 

  15. Zhang, Y., Luo, A., Wang, Y., Dai, X., Lu, Y., Wang, F.: Rotational electromagnetic energy harvester for human motion application at low frequency. Appl. Phys. Lett. 116, 053902 (2020)

    Article  Google Scholar 

  16. Liu, M., Tai, W.-C., Zuo, L.: Vibration energy-harvesting using inerter-based two-degrees-of-freedom system. Mech. Syst. Signal Process. 146, 107000 (2021)

    Article  Google Scholar 

  17. Chen, L., Sun, J.: A highly-efficient method for stationary response of multi-degree-of-freedom nonlinear stochastic systems. Appl. Math. Mech. 41, 967–982 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin, X., Chen, M., Huang, Z.: Suppressing random response of a regular structure by an inerter-based dynamic vibration absorber. J. Vib. Acoust. 141, 041004 (2019)

    Article  Google Scholar 

  19. Xu, M.: Random response of a viscoelastic dielectric elastomer spherical balloon. Probab. Eng. Mech. 66, 103171 (2021)

    Article  Google Scholar 

  20. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69, 1063–1079 (2012)

    Article  Google Scholar 

  21. Zhao, W., Wu, Q., Zhao, X., Nakano, K., Zheng, R.: Development of large-scale bistable motion system for energy harvesting by application of stochastic resonance. J. Sound Vib. 473, 115213 (2020)

    Article  Google Scholar 

  22. Jin, Y., Xiao, S., Zhang, Y.: Enhancement of tristable energy harvesting using stochastic resonance. J. Stat. Mech: Theory Exp. 2018, 123211 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sun, Y.-H., Yang, Y.-G., Zhang, Y., Xu, W.: Probabilistic response of a fractional-order hybrid vibration energy harvester driven by random excitation. Chaos: Interdiscip. J. Nonlinear Sci. 31, 013111 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, X., Zhang, J., Li, R., Dai, L., Wang, W., Yang, K.: Dynamic responses of a two-degree-of-freedom bistable electromagnetic energy harvester under filtered band-limited stochastic excitation. J. Sound Vib. 511, 116334 (2021)

    Article  Google Scholar 

  25. Roberts, J.B., Spanos, P.D.: Random Vibration and Statistical Linearization. Courier Corporation, Chicago (2003)

    MATH  Google Scholar 

  26. Roberts, J.: Transient response of non-linear systems to random excitation. J. Sound Vib. 74, 11–29 (1981)

    Article  MATH  Google Scholar 

  27. Su, L., Ahmadi, G.: Response of frictional base isolation systems to horizontal-vertical random earthquake excitations. Probab. Eng. Mech. 3, 12–21 (1988)

    Article  Google Scholar 

  28. Jin, X., Huang, Z.: Nonstationary probability densities of strongly nonlinear single-degree-of-freedom oscillators with time delay. Nonlinear Dyn. 59, 195–206 (2010)

    Article  MATH  Google Scholar 

  29. Jin, X., Wang, Y., Huang, Z.: Analysis and control for transient responses of seismic-excited hysteretic structures. Soil Dyn. Earthq. Eng. 73, 58–65 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant no. 11872061), Zhejiang Provincial Natural Science Foundation of China (nos. LY20A020006 and LY21E050017), and Fundamental Research Funds for the Provincial Universities of Zhejiang (No. 2020YW07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Tang or Ming Xu.

Ethics declarations

Conflict of interests

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Tang, B. & Xu, M. Transient response of vibration energy harvester incorporating inertial rotation structure. Arch Appl Mech 93, 2735–2748 (2023). https://doi.org/10.1007/s00419-023-02404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02404-5

Keywords

Navigation