Skip to main content
Log in

Analysis of water wave interaction with multiple submerged semi-circular porous structures

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The impact of an array of bottom-mounted semi-circular breakwaters on wave scattering and trapping is investigated. Under the assumption of linear water wave theory, a computational solution is developed using the methods of eigenfunction expansion and multi-domain boundary element. In order to understand how different structural and wave characteristics affect wave flow, the reflection, transmission and dissipation factors are evaluated and investigated. The study reveals that the Bragg reflection happens when a series of porous semi-circular breakwaters scatter waves. In addition, the presence of four structures causes nearly \(80\%\) of the wave energy to dissipate. As the number of semi-circular breakwaters rises, the hydrodynamic forces acting on the impermeable sea wall greatly reduce. The study concludes that the number of structures, radius and porous-effect parameters of the structures plays a vital role in wave reflection, reducing the hydrodynamic load on the impenetrable sea wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gomes, A., Pinho, J.L., Valente, T., Antunes do Carmo, J.S.: Performance assessment of a semi-circular breakwater through cfd modelling. J. Mar. Sci. Eng. 8(3), 226 (2020)

    Article  Google Scholar 

  2. Li, A., Liu, Y., Lyu, Z.: Analysis of water wave interaction with a submerged quarter-circular breakwater using multipole method. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 234(4), 846–860 (2020)

    Google Scholar 

  3. Lyu, Z., Liu, Y., Li, H., Mori, N.: Iterative multipole solution for wave interaction with submerged partially perforated semi-circular breakwater. Appl. Ocean Res. 97, 102103 (2020)

    Article  Google Scholar 

  4. Kumar, U.V., Saha, S., Bora, S.N.: Hydroelastic analysis of a coupled porous structure in finite water depth. Ocean Eng. 246, 110491 (2022)

    Article  Google Scholar 

  5. Gayen, R., Mondal, A.: Water wave interaction with two symmetric inclined permeable plates. Ocean Eng. 124, 180–191 (2016)

    Article  Google Scholar 

  6. Behera, H., Gayathri, R., Selvan, S.A.: Wave attenuation by multiple outer porous barriers in the presence of an inner rigid cylinder. J. Waterw. Port Coast. Ocean Eng. 146(1), 04019035 (2020)

    Article  Google Scholar 

  7. Gayathri, R.: Behera, Harekrushna: mitigation of wave force on a circular flexible plate by a surface-piercing flexible porous barrier. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 235(2), 586–599 (2021)

    MathSciNet  Google Scholar 

  8. Zheng, S., Meylan, M.H., Zhu, G., Greaves, D., Iglesias, G.: Hydroelastic interaction between water waves and an array of circular floating porous elastic plates. J. Fluid Mech. 900, A20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Naskar, S., Kundu, S., Gayen, R: An integral equation method for wave scattering by a pair of horizontal porous plates. Topics in Integral and Integro-Differential Equations: Theory and Applications, pp 229–255 (2021)

  10. Selvan, S.A., Gayathri, R., Behera, H., Meylan, M.H.: Surface wave scattering by multiple flexible fishing cage system. Phys. Fluids 33(3), 037119 (2021)

    Article  Google Scholar 

  11. Barman, K.K., Bora, S.N.: Scattering and trapping of water waves by a composite breakwater placed on an elevated bottom in a two-layer fluid flowing over a porous sea-bed. Appl. Ocean Res. 113, 102544 (2021)

    Article  Google Scholar 

  12. Panduranga, K., Koley, S., Sahoo, T.: Surface gravity wave scattering by multiple slatted screens placed near a caisson porous breakwater in the presence of seabed undulations. Appl. Ocean Res. 111, 102675 (2021)

    Article  Google Scholar 

  13. Vijay, K.G., Venkateswarlu, V., Nishad, C.S.: Wave scattering by inverted trapezoidal porous boxes using dual boundary element method. Ocean Eng. 219, 108149 (2021)

    Article  Google Scholar 

  14. Sollitt, C.K., Cross, R.H.: Wave transmission through permeable breakwaters. The 13th International Conference on Coastal Engineering, New York, pp. 1827–1846 (1972)

  15. Yu, X., Chwang, A.T.: Wave motion through porous structures. J. Eng. Mech. 120(5), 989–1008 (1994)

    Article  Google Scholar 

  16. Akbari, H., Namin, M.M.: Moving particle method for modeling wave interaction with porous structures. Coast. Eng. 74, 59–73 (2013)

    Article  Google Scholar 

  17. Sasmal, A., De, S.: Oblique water wave diffraction by two vertical porous barriers with nonidentical submerged gaps. Meccanica 54(10), 1525–1544 (2019)

    Article  MathSciNet  Google Scholar 

  18. Islam, N., Gayen, R.: Water wave scattering and energy dissipation by interface-piercing porous plates. J. Mar. Sci. Technol. 26(1), 108–127 (2021)

    Article  Google Scholar 

  19. Sarkar, B., Paul, S., De, S.: Effects of flexible bed on oblique wave interaction with multiple surface-piercing porous barriers. Z. Angew. Math. Phys. 72(2), 1–19 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vijay, K.G., Neelamani, S., Nishad, C.S., Sahoo, T.: Gravity wave interaction with multiple submerged artificial reefs. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 235(2), 607–622 (2021)

    Google Scholar 

  21. Xie, S.L.: Waves forces on submerged semicircular breakwater and similar structures. China Ocean Eng. 13(1), 63–72 (1999)

    Google Scholar 

  22. Liu, Y., Li, H.-J.: Analysis of wave interaction with submerged perforated semi-circular breakwaters through multipole method. Appl. Ocean Res. 34, 164–172 (2012)

    Article  Google Scholar 

  23. Nishad, C.S., Neelamani, S., Vijay, K.G.: Hydrodynamic analysis of a seaside quarter-circular breakwater with an array of porous cages using dbem. Coast. Eng. J. 63(2), 126–141 (2021)

    Article  Google Scholar 

  24. Tanimoto, K., Takahashi, S.: Design and construction of caisson breakwaters-the Japanese experience. Coast. Eng. 22(1–2), 57–77 (1994)

    Article  Google Scholar 

  25. Zhang, N.-C., Wang, L.-Q., Yu, Y.-X.: Oblique irregular waves load on semicircular breakwater. Coast. Eng. J. 47(04), 183–204 (2005)

    Article  Google Scholar 

  26. Liu, Y., Li, H.-J., Zhu, L.: Bragg reflection of water waves by multiple submerged semi-circular breakwaters. Appl. Ocean Res. 56, 67–78 (2016)

    Article  Google Scholar 

  27. Behera, H., Ng, C.-O.: Interaction between oblique waves and multiple bottom-standing flexible porous barriers near a rigid wall. Meccanica 53(4–5), 871–885 (2018)

    Article  MathSciNet  Google Scholar 

  28. Behera, H., Ghosh, S.: Oblique wave trapping by a surface-piercing flexible porous barrier in the presence of step-type bottoms. J. Mar. Sci. Appl. 18, 433–443 (2019)

    Article  Google Scholar 

  29. Khan, M.B.M., Behera, H.: Analysis of wave action through multiple submerged porous structures. J. Offshore Mech. Arct. Eng. 142(1), 011101 (2020)

    Article  Google Scholar 

  30. Venkateswarlu, V., Vijay, K.G., Raja, R., Nishad, C.S.: Wave trapping efficiency of a flexible membrane near a partially reflecting seawall. J. Offshore Mech. Arct. Eng. 143(5), 051302 (2021)

    Article  Google Scholar 

  31. Vijay, K.G., Koley, S., Trivedi, K., Nishad, C.S.: Hydrodynamic coefficients of a floater near a partially reflecting seawall in the presence of an array of caisson blocks. J. Offshore Mech. Arct. Eng. 144, 2 (2022)

    Article  Google Scholar 

  32. Wang, K.-H., Ren, X.: An effective wave-trapping system. Ocean Eng. 21(2), 155–178 (1994)

    Article  Google Scholar 

  33. Yip, T.L., Sahoo, T., Chwang, A.T.: Trapping of surface waves by porous and flexible structures. Wave Motion 35(1), 41–54 (2002)

    Article  MATH  Google Scholar 

  34. Behera, H., Mandal, S., Sahoo, T.: Oblique wave trapping by porous and flexible structures in a two-layer fluid. Phys. Fluids 25(11), 112110 (2013)

    Article  Google Scholar 

  35. Behera, H., Khan, M.B.M.: Numerical modeling for wave attenuation in double trapezoidal porous structures. Ocean Eng. 184, 91–106 (2019)

    Article  Google Scholar 

  36. Vijay, K.G., Sahoo, T., Datta, R.: Wave-induced responses of a floating structure near a wall in the presence of permeable plates. Coast. Eng. J. 62(1), 35–52 (2020)

    Article  Google Scholar 

  37. Khan, M.B.M., Behera, H., Sahoo, T., Neelamani, S.: Boundary element method for wave trapping by a multi-layered trapezoidal breakwater near a sloping rigid wall. Meccanica 56(2), 317–334 (2021)

    Article  MathSciNet  Google Scholar 

  38. Behera, H., Sahoo, T., Ng, C.-O.: Wave scattering by a partial flexible porous barrier in the presence of a step-type bottom topography. Coast. Eng. J. 58(03), 1650008 (2016)

    Article  Google Scholar 

  39. Sahoo, H., Gayathri, R., Khan, M.B.M., Behera, H.: Hybrid boundary element and eigenfunction expansion method for wave trapping by a floating porous box near a rigid wall. Ships and Offshore Structures, pp. 1–11 (2022)

  40. Sahoo, T., Lee, M.M., Chwang, A.T.: Trapping and generation of waves by vertical porous structures. J. Eng. Mech. 126(10), 1074–1082 (2000)

    Article  Google Scholar 

  41. Chwang, A.T., Dong, Z.: Wave-trapping due to a porous plate. In Proceedings of the 15th ONR Symposium on Naval Hydrodynamics, 407–414 (1984)

Download references

Acknowledgements

HB gratefully acknowledges the financial support from the Science and Engineering Research Board, Dept. of Science and Technology, Govt. of India, through the MATRICS project (Award Number MTR/2021/000870). T-W Hsu acknowledges the financial support from the National Science and Technology Council of Taiwan (Grant No. MOST 111-2811-E-019-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harekrushna Behera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CC., Behera, H. & Hsu, TW. Analysis of water wave interaction with multiple submerged semi-circular porous structures. Arch Appl Mech 93, 2693–2709 (2023). https://doi.org/10.1007/s00419-023-02402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02402-7

Keywords

Navigation