Skip to main content
Log in

Bending stiffness characterization of braided stent using spring-based theoretical formula

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Flexibility is critical to the braided stent in curing vascular diseases, but there is no theoretical method to characterize its bending stiffness. In this paper, firstly based on the theory of mechanical spring, derivations of an explicit theoretical formula are made to calculate the bending stiffness of the braided stent. The formula does ignore the change of the braiding angle, which, according to a geometric analysis, can get neutralized and has rare effects on the result. Next, an experiment on a braided tube and numerical simulations on stents are conducted, which provide validations to the theoretical formula through comparisons of bending stiffness, stress distributions, and bending angle versus moment curves. Finally, a parametric analysis based on the formula is carried out. It finds that bending stiffness is mostly affected by the wire diameter, but a smaller braiding angle is the key to improving the bending flexibility while keeping a sufficient radial stiffness. It also finds that the formula is applicable to other braiding configurations, such as dual-layer and regular braiding stents. The formula provides theoretical foundations for the stiffness design of the braided stent and can simplify the design process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Qiu, D., Barakat, M., Hopkins, B., Ravaghi, S., Azadani, A.N.: Transcatheter aortic valve replacement in bicuspid valves: the synergistic effects of eccentric and incomplete stent deployment. J. Mech. Behav. Biomed. 121, 104621 (2021). https://doi.org/10.1016/j.jmbbm.2021.104621

    Article  Google Scholar 

  2. Simao, M., Ferreira, J.M., Mora-Rodriguez, J., Fragata, J., Ramos, H.M.: Behaviour of two typical stents towards a new stent evolution. Med. Biol. Eng. Comput. 55, 1019–1037 (2017). https://doi.org/10.1007/s11517-016-1574-x

    Article  Google Scholar 

  3. Brinjikji, W., Murad, M.H., Lanzino, G., Cloft, H.J., Kallmes, D.F.: Endovascular treatment of intracranial aneurysms with flow diverters: a meta-analysis. Stroke 44, 442–447 (2013). https://doi.org/10.1161/STROKEAHA.112.678151

    Article  Google Scholar 

  4. Kojima, M., Irie, K., Masunaga, K., Sakai, Y., Negoro, M.: Hybrid stent device of flow-diverting effect and stent-assisted coil embolization formed by fractal structure. Med. Biol. Eng. Comput. 54, 831–841 (2015). https://doi.org/10.1007/s11517-015-1374-8

    Article  Google Scholar 

  5. Shimizu, S., Naitoh, I., Okumura, F., Hirano, A., Miyabe, K., Nishi, Y., Takada, H., Haneda, K., Anbe, K., Yoshida, M., Kondo, H., Sano, H., Hayashi, K., Kataoka, H.: One-step versus two-step distal self-expandable metal stent placement: a multicenter prospective randomized trial. J. Gastroenterol. Hepatol 36, 2015–2021 (2021). https://doi.org/10.1111/jgh.15393

    Article  Google Scholar 

  6. Duerig, T.W., Wholey, M.: A comparison of balloon-and self-expanding stents. Minim. Invasive. Ther. 11, 173–178 (2002). https://doi.org/10.1080/136457002760273386

  7. De Beule, M., Van Cauter, S., Mortier, P., Van Loo, D., Van Impe, R., Verdonck, P., Verhegghe, B.: Virtual optimization of self-expandable braided wire stents. Med. Eng. Phys. 31, 448–453 (2009). https://doi.org/10.1016/j.medengphy.2008.11.008

    Article  Google Scholar 

  8. Hu, J.: 3-D Fibrous Assemblies: Properties, Applications and Modelling of Three-Dimensional Textile Structures. CRC Press, New York (2008)

    Book  Google Scholar 

  9. Johnston, C.R., Lee, K., Flewitt, J., Moore, R., Dobson, G.M., Thornton, G.M.: The mechanical properties of endovascular stents: an in vitro assessment. Cardiovasc. Eng. 10, 128–135 (2010). https://doi.org/10.1007/s10558-010-9097-9

    Article  Google Scholar 

  10. Bosiers, M., Deloose, K., Verbist, J., Peeters, P.: Carotid artery stenting: which stent for which lesion? Vascular 13, 205–210 (2005). https://doi.org/10.1258/rsmvasc.13.4.205

    Article  Google Scholar 

  11. de Vries, E.E., Kok, M., Hoving, A.M., Slump, C.H., Toorop, R.J., de Borst, G.J.: (In)comparability of carotid artery stent characteristics: a systematic review on assessment and comparison with manufacturer data. Cardiovasc. Interv. Radiol. 43, 1430–1437 (2020). https://doi.org/10.1007/s00270-020-02499-1

    Article  Google Scholar 

  12. Fu, W., Cheng, G., Yan, R., Qiao, A.: Numerical investigations of the flexibility of intravascular braided stent. J. Mech. Med. Biol. 17, 1750075 (2017). https://doi.org/10.1142/S0219519417500750

    Article  Google Scholar 

  13. Ma, J., You, Z., Byrne, J., Rizkallah, R.R.: Design and mechanical properties of a novel cerebral flow diverter stent. Ann. Biomed. Eng. 42, 960–970 (2014). https://doi.org/10.1007/s10439-013-0967-3

    Article  Google Scholar 

  14. Fontaine, A.B., Spigos, D.G., Eaton, G., Das Passos, S., Christoforidis, G., Khabiri, H., Jung, S.: Stent-induced intimal hyperplasia: are there fundamental differences between flexible and rigid stent designs? J. Vasc. Interv. Radiol. 5, 739–744 (1994). https://doi.org/10.1016/S1051-0443(94)71593-1

    Article  Google Scholar 

  15. Colombo, A., Stankovic, G., Moses, J.W.: Selection of coronary stents. J. Am. Coll. Cardiol. 40, 1021–1033 (2002). https://doi.org/10.1016/S0735-1097(02)02123-X

    Article  Google Scholar 

  16. Liu, Y., Zhu, G., Yang, H., Wang, C., Zhang, P., Han, G.: Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method. J. Mech. Behav. Biomed. 77, 157–163 (2018). https://doi.org/10.1016/j.jmbbm.2017.08.023

    Article  Google Scholar 

  17. Wahl, A.M.: Mechanical Spring. McGraw-Hill, New York (1963)

    Google Scholar 

  18. Jedwab, M.R., Clerc, C.O.: A study of the geometrical and mechanical properties of a self-expanding metallic stent–theory and experiment. J. Appl. Biomater. 4, 77–85 (1993). https://doi.org/10.1002/jab.770040111

    Article  Google Scholar 

  19. Agrawal, C.M., Clark, C.G.: Deformation characteristics of a bioabsorbable intravascular stent. Investig. Radiol. 27, 1020–1024 (1993). https://doi.org/10.1097/00004424-199212000-00007

    Article  Google Scholar 

  20. Nuutinen, J.P., Clerc, C., Tormala, P.: Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents. J. Biomater. Sci.-Polym. E 14, 677–687 (2003). https://doi.org/10.1163/156856203322274932

    Article  Google Scholar 

  21. Wang, R., Ravi-Chandar, K.: Mechanical response of a metallic aortic stent-part I: pressure-diameter relationship. J. Appl. Mech.-T ASME 71, 697–705 (2004). https://doi.org/10.1115/1.1782650

    Article  MATH  Google Scholar 

  22. Mckenna, C.G., Vaughan, T.J.: An experimental evaluation of the mechanics of bare and polymer-covered self-expanding wire braided stents. J. Mech. Behav. Biomed. 103, 103549 (2020). https://doi.org/10.1016/j.jmbbm.2019.103549

    Article  Google Scholar 

  23. Giuliodori, A., Hernandez, J.A., Fernandez-Sanchez, D., Galve, I., Soudah, E.: Numerical modeling of bare and polymer-covered braided stents using torsional and tensile springs connectors. J. Biomech. 123, 110459 (2021). https://doi.org/10.1016/j.jbiomech.2021.110459

    Article  Google Scholar 

  24. Kim, J.H., Kang, T.J., Yu, W.R.: Mechanical modeling of self-expandable stent fabricated using braiding technology. J. Biomech. 41, 3202–3212 (2008). https://doi.org/10.1016/j.jbiomech.2008.08.005

    Article  Google Scholar 

  25. Zhao, S., Liu, X., Gu, L.: The impact of wire stent fabrication technique on the performance of stent placement. J. Med. Devices 6, 011007 (2012). https://doi.org/10.1115/1.4005788

    Article  Google Scholar 

  26. Ni, X., Pan, C., Prusty, B.G.: Numerical investigations of the mechanical properties of a braided non-vascular stent design using finite element method. Comput. Methods Biomech. Biomed. Eng. 18, 1117–1125 (2015). https://doi.org/10.1080/10255842.2013.873420

    Article  Google Scholar 

  27. Fu, W., Xia, Q., Yan, R., Qiao, A.: Numerical investigations of the mechanical properties of braided vascular stents. Bio-med. Mater. Eng. 29, 81–94 (2018). https://doi.org/10.3233/BME-171714

    Article  Google Scholar 

  28. Rawal, A., Saraswat, H., Sibal, A.: Tensile response of braided structures: a review. Text. Res. J. 85, 2083–2096 (2015). https://doi.org/10.1177/004051751557633

    Article  Google Scholar 

  29. Suzuki, T., Takao, H., Fujimura, S., Dahmani, C., Ishibashi, T., Mamori, H., Fukushima, N., Murayama, Y., Yamamoto, M.: Relationships between geometrical parameters and mechanical properties for a helical braided flow diverter stent. Technol. Health Care 25, 611–623 (2017). https://doi.org/10.3233/THC-160535

    Article  Google Scholar 

  30. Müller-Hülsbeck, S., Schäfer, P.J., Charalambous, N., Schaffner, S.R., Heller, M., Jahnke, T.: Comparison of carotid stents: an in-vitro experiment focusing on stent design. J. Endovasc. Ther. 16, 168–177 (2009). https://doi.org/10.1583/08-2539.1

    Article  Google Scholar 

  31. Liu, Y., Wang, C., Zhang, Y., Zhang, P., Han, G.: Comparative bending behaviors between fully covered and bare biodegradable polydioxanone biliary stents using a numerical approach. Text. Res. J. 89, 2569–2582 (2019). https://doi.org/10.1177/0040517518797342

    Article  Google Scholar 

  32. Müller-Hülsbeck, S., Schäfer, P.J., Charalambous, N., Yagi, H., Heller, M., Jahnke, T.: Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design. J. Endovasc. Ther. 17, 767–776 (2010). https://doi.org/10.1583/10-3069.1

    Article  Google Scholar 

  33. Rebelo, R., Vila, N., Fangueiro, R., Carvalho, S., Rana, S.: Influence of design parameters on the mechanical behavior and porosity of braided fibrous stents. Mater. Des. 86, 237–247 (2015). https://doi.org/10.1016/j.matdes.2015.07.051

    Article  Google Scholar 

  34. McKenna, C.G., Vaughan, T.J.: A finite element investigation on design parameters of bare and polymer-covered self-expanding wire braided stents. J. Mech. Behav. Biomed. 115, 104305 (2021). https://doi.org/10.1016/j.jmbbm.2020.104305

    Article  Google Scholar 

  35. Fu, W., Li, L., Qiao, A.: Numerical simulation of flattening phenomenon in braided stent during bending deformation. Beijing Biomed. Eng. 39(5), 455–461 (2020). https://doi.org/10.3969/j.issn.1002-3208.2020.05.002. (in Chinese)

    Article  Google Scholar 

  36. Dottori, S., Flamini, V., Vairo, G.: Mechanical behavior of peripheral stents and stent-vessel interaction: a computational study. Int. J. Comput. Methods Eng. 17, 196–210 (2016). https://doi.org/10.1080/15502287.2016.1188530

    Article  Google Scholar 

  37. Alherz, A.I., Tanweer, O., Flamini, V.: A numerical framework for the mechanical analysis of dual-layer stents in intracranial aneurysm treatment. J. Biomech. 49, 2420–2427 (2016). https://doi.org/10.1016/j.jbiomech.2016.02.026

    Article  Google Scholar 

  38. Zhang, Y., Liu, H., Wang, D.: Handbook of Spring. China Machine Press, Beijing (2017).. (in Chinese)

    Google Scholar 

  39. Shang, Z., Ma, J., You, Z., Wang, S.: A foldable manipulator with tunable stiffness based on braided structure. J. Biomed. Mater. Res. B 108, 316–325 (2020). https://doi.org/10.1002/jbm.b.34390

    Article  Google Scholar 

  40. Simons, J.W, Shockey, D.A.: Mechanical testing devices for characterizing stents. In: SMST Conference California, pp. 7–11 (2006)

  41. Shang, Z., Wang, S., You, Z., Ma, J.: A hybrid tubular braid with improved longitudinal stiffness for medical catheter. J. Mech. Med. Biol. 19, 1950003 (2019). https://doi.org/10.1142/S0219519419500039

    Article  Google Scholar 

  42. Alpyildiz, T.: 3D geometrical modelling of tubular braids. Text. Res. J. 82, 443–453 (2012). https://doi.org/10.1177/0040517511427969

    Article  Google Scholar 

  43. Kyosev, Y.: Generalized geometric modeling of tubular and flat braided structures with arbitrary floating length and multiple filaments. Text. Res. J. 86, 1270–1279 (2016). https://doi.org/10.1177/0040517515609261

    Article  Google Scholar 

  44. Shang, Z., Ma, J., You, Z., Wang, S.: Lateral indentation of a reinforced braided tube with tunable stiffness. Thin Walled Struct. 149, 106608 (2020). https://doi.org/10.1016/j.tws.2020.106608

    Article  Google Scholar 

  45. Kyosev, Y.: Braiding Technology for Textiles: Principles, Design and Processes. Elsevier, Cambridge (2014)

    Google Scholar 

  46. Saraswat, H., Rawal, A., Singh, R.: Tensile behaviour of multi-layered braided structures. J. Mater. Sci. 49, 6427–6436 (2014). https://doi.org/10.1007/s10853-014-8372-3

    Article  Google Scholar 

Download references

Funding

This work was supported by the Science Foundation of Zhejiang Sci-Tech University (Grant 21022312-Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zufeng Shang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Z., Ma, J. Bending stiffness characterization of braided stent using spring-based theoretical formula. Arch Appl Mech 93, 947–960 (2023). https://doi.org/10.1007/s00419-022-02307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02307-x

Keywords

Navigation