Skip to main content
Log in

Vibroacoustic performance of star-shaped honeycomb-core annular cellular structures

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

A Correction to this article was published on 08 July 2023

This article has been updated

Abstract

In this paper, the vibroacoustic performance of the star-shaped honeycomb-core annular cellular structures is investigated. The results imply the superiority of these structures over the hexagonal honeycomb-core annular cellular structures, with constant mass and overall structure size, in terms of sound insulation relative to static bending compliance. The spectral element method (SEM) is employed to accurately evaluate natural frequencies and dynamic responses with a reduced number of elements within a wide frequency range. The sound transmission loss (STL) is used as a metric to define vibroacoustic performance. The in-plane effective shear modulus of star-shaped honeycombs is derived analytically to analyze the mechanical and vibroacoustic characteristics of the structures. A structural–acoustic optimization study of star-shaped honeycombs for the maximum sound transmission loss under constant mass and high static bending stiffness constraints is evaluated and presented for a specified target range. An increase of sound transmission loss by 490.23% for the considered target range in the optimized star-shaped honeycombs shows significant vibroacoustic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

References

  1. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University, Cambridge (1999)

    MATH  Google Scholar 

  2. He, M., Hu, W.: A study on composite honeycomb sandwich panel structure. Mater. Des. (2008). https://doi.org/10.1016/j.matdes.2007.03.003

    Article  Google Scholar 

  3. Fu, M., Chen, Y., Hu, L.: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Compos. Struct. (2017). https://doi.org/10.1016/j.compstruct.2016.10.090

    Article  Google Scholar 

  4. Ajdari, A., Nayeb-Hashemi, H., Vaziri, A.: Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures. Int. J. Solid Struct. (2011). https://doi.org/10.1016/j.ijsolstr.2010.10.018

    Article  MATH  Google Scholar 

  5. Schultz, J., Griese, D., Ju, J., Shankar, P., Summers, J.D., Thompson, L.: Design of honeycomb meso-structures for crushing energy absorption. ASME J. Mech. Des. (2012). https://doi.org/10.1115/1.4006739

    Article  Google Scholar 

  6. Koutsianitis, P.I., Tairidis, G.K., Drosopoulos, G.A., Stavroulakis, G.E.: Conventional and star-shaped auxetic materials for the creation of band gaps. Arch. Appl. Mech. (2019). https://doi.org/10.1007/s00419-019-01594-1

    Article  Google Scholar 

  7. Wei, L., Zhao, X., Yu, Q., Zhu, G.: A novel star auxetic honeycomb with enhanced in-plane crushing strength. Thin Walled Struct. (2020). https://doi.org/10.1016/j.tws.2020.106623

    Article  Google Scholar 

  8. Xie, S., Jing, K., Zhou, H., Liu, X.: Mechanical properties of Nomex honeycomb sandwich panels under dynamic impact. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2019.111814

    Article  Google Scholar 

  9. Lu, T.J.: Heat transfer efficiency of metal honeycombs. Int. J. Heat Mass Transf. (1999). https://doi.org/10.1016/S0017-9310(98)00306-8

    Article  MATH  Google Scholar 

  10. Seepersad, C.C., Dempsey, B.M., Allen, J.K., Mistree, F., McDowell, D.L.: Design of multifunctional honeycomb materials. AIAA J. (2004). https://doi.org/10.2514/1.9594

    Article  Google Scholar 

  11. Ruzzene, M., Scarpa, F., Soranna, F.: Wave beaming effects in two-dimensional cellular structures. Smart Mater. Struct. (2003). https://doi.org/10.1088/0964-1726/12/3/307

    Article  Google Scholar 

  12. Ruzzene, M.: Vibration and sound radiation of sandwich beams with honeycomb truss core. J. Sound Vib. (2004). https://doi.org/10.1016/j.jsv.2003.09.026

    Article  Google Scholar 

  13. El-Raheb, M., Wagner, P.: Transmission of sound across a trusslike periodic panel; 2D analysis. J. Acoust. Soc. Am. (1997). https://doi.org/10.1121/1.419633

    Article  Google Scholar 

  14. Griese, D., Summers, J.D., Thompson, L.: The effect of honeycomb core geometry on the sound transmission performance of sandwich panels. J. Vib. Acoust. (2015). https://doi.org/10.1115/1.4029043

    Article  Google Scholar 

  15. Kurtze, G., Watters, B.G.: New wall design for high transmission loss or high damping. J. Acoust. Soc. Am. (1959). https://doi.org/10.1121/1.1907780

    Article  Google Scholar 

  16. Ford, D.R., Lord, P., Walker, A.W.: Sound transmission through sandwich constructions. J. Sound Vib. (1967). https://doi.org/10.1016/0022-460X(67)90173-3

    Article  Google Scholar 

  17. Narayanan, S., Shanbhag, R.L.: Sound transmission through a damped sandwich panel. J. Sound Vib. (1982). https://doi.org/10.1016/0022-460X(82)90273-5

    Article  Google Scholar 

  18. Moore, J.A., Lyon, R.H.: Sound transmission loss characteristics of sandwich panel constructions. J. Acoust. Soc. Am. (1991). https://doi.org/10.1121/1.1894638

    Article  Google Scholar 

  19. Moosavimehr, S.E., Phani, A.S.: Sound transmission loss characteristics of sandwich panels with a truss lattice core. J. Acoust. Soc. Am. (2017). https://doi.org/10.1121/1.4979934

    Article  Google Scholar 

  20. Spadoni, A., Ruzzene, M.: Structural and acoustic behavior of chiral truss-core beams. J. Vib. Acoust. (2006). https://doi.org/10.1115/1.2202161

    Article  Google Scholar 

  21. Li, Q., Yang, D.: Vibration and sound transmission performance of sandwich panels with uniform and gradient auxetic double arrowhead honeycomb cores. Shock Vib. (2019). https://doi.org/10.1155/2019/6795271

    Article  Google Scholar 

  22. Denli, H., Sun, Q.J.: Structural-acoustic optimization of sandwich structures with cellular cores for minimum sound radiation. J. Sound Vib. (2007). https://doi.org/10.1016/j.jsv.2006.09.025

    Article  Google Scholar 

  23. Galgalikar, R., Thompson, L.: Design optimization of honeycomb core sandwich panels for maximum sound transmission loss. J. Vib. Acoust. (2016). https://doi.org/10.1115/1.4033459

    Article  Google Scholar 

  24. Li, Q., Yang, D.: Mechanical and acoustic performance of sandwich panels with hybrid cellular cores. J. Vib. Acoust. (2018). https://doi.org/10.1115/1.4040514

    Article  Google Scholar 

  25. Koval, L.R.: On the sound transmission into an orthotropic shell. J. Sound Vib. (1979). https://doi.org/10.1016/0022-460x(79)90376-6

    Article  MATH  Google Scholar 

  26. Tang, Y.Y., Robinson, J.H., Silcox, R.J.: Sound transmission through a cylindrical sandwich shell with honeycomb core. In: Paper Presented at AIAA 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, United States (1996). https://doi.org/10.2514/6.1996-877

  27. Li, Q., Yang, D.: Vibro-acoustic performance and design of annular cellular structures with graded auxetic mechanical metamaterials. J. Sound Vib. (2020). https://doi.org/10.1016/j.jsv.2019.115038

    Article  Google Scholar 

  28. Ren, C., Li, Q., Yang, D.: Quasi-static and sound insulation performance of a multifunctional cylindrical cellular shell with bidirectional negative-stiffness metamaterial cores. Int. J. Mech. Sci. (2020). https://doi.org/10.1016/j.ijmecsci.2020.105662

    Article  Google Scholar 

  29. Theocaris, P.S., Stavroolakis, G.E., Panagiotopoulos, P.D.: Negative Poisson’s ratio in composites with star-shaped inclusions: a numerical homogenization approach. Arch. Appl. Mech. (1997). https://doi.org/10.1007/s004190050117

    Article  Google Scholar 

  30. Grima, J.N., Gatt, R., Alderson, A., Evans, K.E.: On the potential of connected stars as auxetic systems. Mol. Simul. (2005). https://doi.org/10.1080/08927020500401139

    Article  Google Scholar 

  31. Meng, J., Deng, Z., Zhang, K., Xu, X., Wen, F.: Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio. Smart Mater. Struct. (2015). https://doi.org/10.1088/0964-1726/24/9/095011

    Article  Google Scholar 

  32. Tang, H.W., Chou, W.D., Chen, L.W.: Wave propagation in the polymer-filled star-shaped honeycomb periodic structure. Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1124-x

    Article  Google Scholar 

  33. Wittrick, W., Williams, F.W.: A general algorithm for computing natural frequencies of elastic structures. Q. J. Mech. Appl. Math. (1971). https://doi.org/10.1093/qjmam/24.3.263

    Article  MATH  Google Scholar 

  34. Williams, E.G.: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography. Academic, London (1999)

    Google Scholar 

  35. Lee, U.: Spectral Element Method in Structural Dynamics. Wiley, New York (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Sheykhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheykhi, M. Vibroacoustic performance of star-shaped honeycomb-core annular cellular structures. Arch Appl Mech 93, 841–860 (2023). https://doi.org/10.1007/s00419-022-02303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02303-1

Keywords

Navigation