Skip to main content
Log in

Capillary-driven flows in eccentric annuli under microgravity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The capillary-driven flow is an essential portion of liquid behavior under microgravity. Capillary-driven flows in eccentric annuli under microgravity are deeply analyzed in this paper. A second-order differential equation for the climbing height of liquid is derived. It can be solved with the Runge–Kutta method with appropriate initial conditions. The influences of the dynamic angle, the friction force on the annulus wall and the liquid meniscus in the reservoir on liquid behaviors are all considered in this paper. Moreover, effects of eccentricity on flow resistance and flow speed are discussed. This study has been verified by numerical simulation with the volume of fluid method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data of this paper can be obtained by contacting the corresponding author.

References

  1. Snyder, W.T., Goldstein, G.A.: An analysis of fully developed laminar flow in an eccentric annulus. AIChE J 11(3), 462–467 (1965). https://doi.org/10.1002/aic.690110319

    Article  Google Scholar 

  2. Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921)

    Article  Google Scholar 

  3. Levine, S., Reed, P., Watson, E.J., Neale, G.: A theory of the rate of rise of a liquid in a capillary. Colloid and Interface Sci. 3, 403–419 (1976). https://doi.org/10.1016/b978-0-12-404503-3.50048-3

    Article  Google Scholar 

  4. Stange, M., Dreyer, M., Rath, H.J.: Capillary driven flow in circular cylindrical tubes. Phys. Fluids 15, 2587–2601 (2003). https://doi.org/10.1063/1.1596913

    Article  MATH  Google Scholar 

  5. Chen, S.T., Ye, Z.J., Duan, L., Kang, Q.: Capillary driven flow in oval tubes under microgravity. Phys. Fluids 33(3), 032111 (2021). https://doi.org/10.1063/5.0040993

    Article  Google Scholar 

  6. Tsori, Y.: Discontinuous liquid rise in capillaries with varying cross-sections. Langmuir 22, 8860–8863 (2006). https://doi.org/10.1021/la061605x

    Article  Google Scholar 

  7. Liou, W.W., Peng, Y.Q., Parker, P.E.: Analytical modeling of capillary flow in tubes of nonuniform cross section. J. Colloid Interface Sci. 333, 389–399 (2009). https://doi.org/10.1016/j.jcis.2009.01.038

    Article  Google Scholar 

  8. Cheng, X., Chen, Y., Li, H.R., Li, B.X., Han, X., Xin, G.M.: Investigation on capillary flow in tubes with variable diameters. J. Porous Media 22(13), 1627–1638 (2019). https://doi.org/10.1615/jpormedia.2019026774

    Article  Google Scholar 

  9. Lei, J., Xu, Z., Xin, F., Lu, T.J.: Dynamics of capillary flow in an undulated tube. Phys. Fluids 33(5), 05210, 9 (2021). https://doi.org/10.1063/5.0048868

    Article  Google Scholar 

  10. Lei, J.C., Sun, H., Liu, S.B., Feng, S.S., Lu, T.J.: Hypergravity effect on dynamic capillary flow in inclined conical tubes with undulated inner walls. Microgravity Sci. Technol. 34, 71 (2022). https://doi.org/10.1007/s12217-022-09996-7

    Article  Google Scholar 

  11. Daniel, A.B., Chen, Y.K., Semerjian, B., Tavan, N., Weislogel, M.M.: Compound capillary flows in complex containers: drop tower test results. Microgravity Sci. Technol. 22, 475–485 (2010). https://doi.org/10.1007/s12217-010-9213-x

    Article  Google Scholar 

  12. Chassagne, R., Dörflfler, F., Guyenot, M., Harting, J.: Modeling of capillary-driven flows in axisymmetric geometries. Comput. Fluids 178, 132–140 (2019). https://doi.org/10.1016/j.compfluid.2018.08.024

    Article  MATH  Google Scholar 

  13. Sufia, K., Jyoti, P., Singh, B.S.: An analytical solution of the inverse problem of capillary imbibition. Phys. Fluids 32(4), 041704 (2020). https://doi.org/10.1063/5.0008081

    Article  Google Scholar 

  14. Wang, Q.G., Li, L., Gu, J.P., Weng, N.: A dynamic model for the oscillatory regime of liquid rise in capillaries. Chem. Eng. Sci. 209, 115220 (2019). https://doi.org/10.1016/j.ces.2019.115220

    Article  Google Scholar 

  15. Wang, C.X., Xu, S.H., Sun, Z.W., Hu, W.R.: Influence of contact angle and tube size on capillary-driven flow under microgravity. AIAA J. 47(11), 2642 (2009). https://doi.org/10.2514/1.41899

    Article  Google Scholar 

  16. Wang, C.X., Xu, S.H., Sun, Z.W., Hu, W.R.: A study of the influence of initial liquid volume on the capillary in interior corner under microgravity. Int. J. Heat Mass Tran. 53(9–10), 1801 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.009

    Article  Google Scholar 

  17. Weislogel, M.M., Lichter, S.: Capillary flow in an interior corner. J. Fluid Mech. 373, 349–378 (1998). https://doi.org/10.1017/s0022112098002535

    Article  MATH  Google Scholar 

  18. Weislogel, M.M., Nardin, C.L.: Capillary driven flow along interior corners formed by planar walls of varying wettability. Microgravity Sci. Technol. 17(3), 45–55 (2005). https://doi.org/10.1007/BF02872087

    Article  Google Scholar 

  19. Chen, Y.K., Weislogel, M.M., Nardin, C.L.: Capillary driven flows along rounded interior corners. J. Fluid Mech. 556, 235–271 (2006). https://doi.org/10.1007/bf02872087

    Article  MATH  Google Scholar 

  20. Li, Y.Q., Hu, M.Z., Liu, L., Su, Y.Y., Duan, L., Kang, Q.: Study of capillary driven flow in an interior corner of rounded wall under microgravity. Microgravity Sci. Technol. 27, 193–205 (2015). https://doi.org/10.1007/s12217-015-9435-z

    Article  Google Scholar 

  21. Higuera, F.J., Medina, A., Linan, A.: Capillary rise of a liquid between two vertical plates making a small angle. Phys. Fluids 20, 102102 (2008). https://doi.org/10.1063/1.3000425

    Article  MATH  Google Scholar 

  22. Wu, Z.Y., Huang, Y.Y., Chen, X.Q., Zhang, X.: Capillary driven flows along curved interior corners. Int. J. Multiphase Flow 109, 14–25 (2018). https://doi.org/10.1016/j.ijmultiphaseflow.2018.04.00

    Article  Google Scholar 

  23. Tian, Y., Jiang, Y., Zhou, J.J., Doi, M.: Dynamics of Taylor rising. Langmuir 35, 5183–5190 (2019). https://doi.org/10.1021/acs.langmuir.9b00335

    Article  Google Scholar 

  24. Zhou, J.J., Doi, M.: Universality of capillary rising in corners. J. Fluid Mech. 900, A29 (2020). https://doi.org/10.1017/jfm.2020.531

    Article  MATH  Google Scholar 

  25. Dreyer, M., Delgado, A., Rath, H.J.: Capillary rise of liquid between parallel plates under microgravity. J. Colloid Interface Sci. 163, 158–168 (1994). https://doi.org/10.1006/jcis.1994.1092

    Article  Google Scholar 

  26. Wolf, F., Santos, L., Phillippi, P.: Capillary rise between plates under dynamic conditions. J. Colloid Interface Sci. 344, 171–179 (2010). https://doi.org/10.1016/j.jcis.2009.12.023

    Article  Google Scholar 

  27. Weng, N., Wang, Q.G., Li, J.D., Lyu, J.F., Zhang, H.X., Yao, W.: Liquid penetration in metal wire mesh between parallel plates under normal gravity and microgravity conditions. Appl. Therm. Eng. 167, 114722 (2019). https://doi.org/10.1016/j.applthermaleng.2019.11472

    Article  Google Scholar 

  28. Klatte, J., Haake, D., Weislogel, M.M., Dreyer, M.: A fast numerical procedure for steady capillary flow in open channels. Acta Mech. 201, 269–276 (2008). https://doi.org/10.1007/s00707-008-0063-1

    Article  MATH  Google Scholar 

  29. Bauer, F.: Axial response of differently excited anchored viscous liquid bridges in zero-gravity. Arch. Appl. Mech. 63(4–5), 322–336 (1993). https://doi.org/10.1007/bf00793898

    Article  MATH  Google Scholar 

  30. Schilling, U., Siekmann, J.: Numerical study of equilibrium capillary surfaces under low gravitational conditions. Arch. Appl. Mech. 60(3), 176–182 (1990). https://doi.org/10.1007/bf00539587

    Article  Google Scholar 

  31. Aksel, N.: Influence of the capillarity on a creeping film flow down an inclined plane with an edge. Arch. Appl. Mech. 70(1–3), 81–90 (2000). https://doi.org/10.1007/s004199900039

    Article  MATH  Google Scholar 

  32. Chen, S.T., Duan, L., Kang, Q.: Study on propellant management device in plate surface tension tanks. Acta Mech. Sinica 37(10), 1501–1511 (2021). https://doi.org/10.1007/s10409-021-01121-y

    Article  Google Scholar 

  33. Wang, L., Zhang, X., Yun, Y., Liu, J., Li, W., Huang, B.: Numerical simulation of the reorientation process under different conditions in a vane-type surface tension propellant tank. Microgravity Sci. Technol. 34, 37 (2022). https://doi.org/10.1007/s12217-022-09950-7

    Article  Google Scholar 

  34. Zhang, D., Meng, L.: Numerical simulation analysis of liquid transportation in capsule-type vane tank under microgravity. Microgravity Sci. Technol. 32, 817–824 (2020). https://doi.org/10.1007/s12217-020-09811-1

    Article  Google Scholar 

  35. Li, J., Lin, H., Li, K., Zhao, J., Hu, W.: Liquid sloshing in partially filled capsule storage tank undergoing gravity reduction to low/micro-gravity condition. Microgravity Sci. Technol. 32, 587–596 (2020). https://doi.org/10.1007/s12217-020-09801-3

    Article  Google Scholar 

  36. Jiang, T.S., Oh, S.G., Slattery, J.C.: Correlation for dynamic contact angle. J. Colloid Interface Sci. 69, 74–77 (1979). https://doi.org/10.1016/0021-9797(79)90081-x

    Article  Google Scholar 

Download references

Acknowledgements

We are really grateful for Prof. Li Duan. She offered many suggestions when preparing the manuscript in the beginning. This study was funded by the China Manned Space Engineering Program (Fluid Physics Experimental Rack and the Priority Research Program of Space Station), and the Natural Science Foundation Project (No. 12032020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Guo, L., Li, Y. et al. Capillary-driven flows in eccentric annuli under microgravity. Arch Appl Mech 93, 731–743 (2023). https://doi.org/10.1007/s00419-022-02295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02295-y

Keywords

Navigation