Skip to main content
Log in

Analytical solution for nonlinear buckling of convex and concave auxetic-core toroidal shell segments with graphene-reinforced face sheets subjected to radial loads

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The buckling and postbuckling behavior of thin toroidal shell segments composed of auxetic core and graphene-reinforced face sheets under radial loads is reported in the present research combining exiting analytical solutions with the new material designs. Three types of graphene distribution of laminated face sheets and the lattice auxetic core are considered for convex, concave toroidal shell segments and cylindrical shells. The honeycomb lattice auxetic core can be modeled applying a homogenization technique. The Stein and McElman approximation can be used for longitudinally shallow shells to establish the nonlinear equilibrium equations in the framework of the Donnell shell theory with geometrically nonlinearities taking into account the two-parameter foundation model. The expressions of the radial load-maximal deflection postbuckling curves are achieved using the Galerkin method. The numerical investigations indicate the remarkably positive effects of honeycomb auxetic core and graphene-reinforced face sheets on nonlinear buckling responses of shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shen, H.S.: Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments. Eng. Struct. 25(4), 487–497 (2003)

    Article  Google Scholar 

  2. Huang, H., Han, Q.: Research on nonlinear postbuckling of functionally graded cylindrical shells under radial loads. Compos. Struct. 92(6), 1352–1357 (2010)

    Article  Google Scholar 

  3. Foroutan, K., Ahmadi, H.: Nonlinear static and dynamic buckling analyses of imperfect FGP cylindrical shells resting on nonlinear elastic foundation under axial compression. Int. J. Struct. Stab. Dyn. 20(7), 2050074 (2020)

    Article  Google Scholar 

  4. Sofiyev, A.H., Hui, D.: On the vibration and stability of FGM cylindrical shells under external pressures with mixed boundary conditions by using FOSDT. Thin Wall. Struct. 134, 419–427 (2019)

    Article  Google Scholar 

  5. Xie, J., Hao, S., Wang, W., Shi, P.: Analytical solution of stress in functionally graded cylindrical/spherical pressure vessel. Arch. Appl. Mech. 91, 3341–3363 (2021)

    Article  Google Scholar 

  6. Nam, V.H., Phuong, N.T., Trung, N.T.: Nonlinear buckling and postbuckling of sandwich FGM cylindrical shells reinforced by spiral stiffeners under torsion loads in thermal environment. Acta Mech. 230(9), 3183–3204 (2019)

    Article  MATH  Google Scholar 

  7. Phuong, N.T., Nam, V.H., Trung, N.T., Duc, V.M., Phong, P.V.: Nonlinear stability of sandwich functionally graded cylindrical shells with stiffeners under axial compression in thermal environment. Int. J. Struct. Stab. Dyn. 19(7), 1950073 (2019)

    Article  Google Scholar 

  8. Rahmani, M., Mohammadi, Y., Kakavand, F.: Buckling analysis of different types of porous FG conical sandwich shells in various thermal surroundings. J. Braz. Soc. Mech. Sci. Eng. 42, 164 (2020)

    Article  Google Scholar 

  9. Bagheri, H., Kiani, Y., Bagheri, N., Eslami, M.R.: Free vibration of joined cylindrical–hemispherical FGM shells. Arch. Appl. Mech. 90, 2185–2199 (2020)

    Article  MATH  Google Scholar 

  10. Stein, M., McElman, J.A.: Buckling of segments of toroidal shells. AfAA J 3, 1704–1709 (1965)

    Google Scholar 

  11. Bich, D.H., Ninh, D.G., Thinh, T.I.: Non-linear buckling analysis of FGM toroidal shell segments filled inside by an elastic medium under external pressure loads including temperature effects. Compos. Part B Eng. 87, 75–91 (2016)

    Article  Google Scholar 

  12. Babaei, H., Jabbari, M., Eslami, M.R.: The effect of porosity on elastic stability of Toroidal shell segments made of saturated porous functionally graded materials. J. Press. Vessel Technol. 143(3), 031501 (2021)

    Article  Google Scholar 

  13. Hung, D.X., Tu, T.M., Long, N.V., Anh, P.H.: Nonlinear buckling and postbuckling of FG porous variable thickness toroidal shell segments surrounded by elastic foundation subjected to compressive loads. Aerosp. Sci. Technol. 107, 106253 (2020)

    Article  Google Scholar 

  14. Shen, H.S., Xiang, Y., Lin, F.: Nonlinear bending of functionally graded graphene reinforced composite laminated plates resting on elastic foundations in thermal environments. Compos. Struct. 170, 80–90 (2017)

    Article  Google Scholar 

  15. Shen, H.S., Xiang, Y.: Effect of negative Poisson’s ratio on the postbuckling behavior of pressure-loaded FG-GRMMC laminated cylindrical shells. Eng. Struct. 243, 112458 (2021)

    Article  Google Scholar 

  16. Shen, H.S., Xiang, Y.: Postbuckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compression in thermal environments. Comput. Methods Appl. Mech. Eng. 330, 64–82 (2018)

    Article  MATH  Google Scholar 

  17. Shen, H.S., Xiang, Y.: Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments. Thin Wall. Struct. 124, 151–160 (2018)

    Article  Google Scholar 

  18. Kiani, Y.: NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates. Thin Wall. Struct. 125, 211–219 (2018)

    Article  Google Scholar 

  19. Kiani, Y.: Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation. Comput. Methods Appl. Mech. Eng. 332, 86–101 (2018)

    Article  MATH  Google Scholar 

  20. Kiani, Y.: Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment. Compos. Part B Eng. 156, 128–137 (2019)

    Article  Google Scholar 

  21. Phuong, N.T., Trung, N.T., Doan, C.V., Thang, N.D., Duc, V.M., Nam, V.H.: Nonlinear thermomechanical buckling of FG-GRC laminated cylindrical shells stiffened by FG-GRC stiffeners subjected to external pressure. Acta Mech. 231, 5125–5144 (2020)

    Article  MATH  Google Scholar 

  22. Phuong, N.T., Duc, V.M., Doan, C.V., Nam, V.H.: Nonlinear torsional buckling of functionally graded graphene-reinforced composite (FG-GRC) laminated cylindrical shells stiffened by FG-GRC laminated stiffeners in thermal environment. Polym. Compos. 42(6), 3051–3063 (2021)

    Article  Google Scholar 

  23. Nam, V.H., Phuong, N.T., Lanh, H.S., Duc, V.M., Doan, C.V.: Nonlinear buckling analysis of stiffened FG-GRC laminated cylindrical shells subjected to axial compressive load in thermal environment. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1932522

    Article  Google Scholar 

  24. Ly, L.N., Phuong, N.T., Nam, V.H., Trung, N.T., Duc, V.M.: An analytical approach of nonlinear thermo-mechanical buckling of functionally graded graphene-reinforced composite laminated cylindrical shells under compressive axial load surrounded by elastic foundation. J. Appl. Comput. Mech. 6(2), 357–372 (2020)

    Google Scholar 

  25. Phuong, N.T., Nam, V.H., Trung, N.T., Duc, V.M., Loi, N.V., Thinh, N.D., Tu, P.T.: Thermomechanical postbuckling of functionally graded graphene-reinforced composite laminated toroidal shell segments surrounded by Pasternak’s elastic foundation. J. Thermo-Plast. Compos. Mater. 34(10), 1380–1407 (2021)

    Article  Google Scholar 

  26. Shen, H.S., Li, C., Huang, X.H.: Assessment of negative Poisson’s ratio effect on the postbuckling of pressure-loaded FG-CNTRC laminated cylindrical shells. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1880934

    Article  Google Scholar 

  27. Zhu, X., Zhang, J., Zhang, W., Chen, J.: Vibration frequencies and energies of an auxetic honeycomb sandwich plate. Mech. Adv. Mater. Struct. 26(23), 1951–1957 (2019)

    Article  Google Scholar 

  28. Hu, J.S., Wang, B.L.: Crack growth behavior and thermal shock resistance of ceramic sandwich structures with an auxetic honeycomb core. Compos. Struct. 260, 113256 (2021)

    Article  Google Scholar 

  29. Usta, F., Türkmen, H.S., Scarpa, F.: Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures. Thin Wall. Struct. 163, 107738 (2021)

    Article  Google Scholar 

  30. Li, C., Shen, H.S., Yang, J., Wang, H.: Low-velocity impact response of sandwich plates with GRC face sheets and FG auxetic 3D lattice cores. Eng. Anal. Bound. Elem. 132, 335–344 (2021)

    Article  MATH  Google Scholar 

  31. Eipakchi, H., Nasrekani, F.M.: Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure. Compos. Struct. 254, 112847 (2020)

    Article  Google Scholar 

  32. Guo, Y., Zhang, J., Chen, L., Du, B., Liu, H., Chen, L., Li, W., Liu, Y.: Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerosp. Sci. Technol. 98, 105662 (2020)

    Article  Google Scholar 

  33. Farrell, D.T., McGinn, C., Bennett, G.J.: Extension twist deformation response of an auxetic cylindrical structure inspired by deformed cell ligaments. Compos. Struct. 238, 111901 (2020)

    Article  Google Scholar 

  34. Ly, L.N., Duc, V.M., Trung, N.T., Phuong, N.T., Dong, D.T., Minh, T.Q., Tien, N.V., Hung, V.T.: An analytical approach to the nonlinear buckling behavior of axially compressed auxetic-core cylindrical shells with carbon nanotube-reinforced face sheets. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 235(10), 2254–2265 (2021)

    Google Scholar 

  35. Tien, N.V., Duc, V.M., Nam, V.H., Phuong, N.T., Lanh, H.S., Dong, D.T., Ly, L.N., Hung, D., Minh, T.Q.: Nonlinear postbuckling of auxetic-core sandwich toroidal shell segments with CNT-Reinforced face sheets under external pressure. Int. J. Struct. Stab. Dyn. 22(01), 2250006 (2022)

    Article  Google Scholar 

  36. Koutsianitis, P.I., Tairidis, G.K., Stavroulakis, G.E.: Shunted piezoelectric patches on auxetic microstructures for the enhancement of band gaps. Arch. Appl. Mech. 91, 739–751 (2021)

    Article  Google Scholar 

  37. Amabili, M.: Nonlinear vibrations and stability of shells and plates. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Hoai Nam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phuong, N.T., Van Doan, C., Duc, V.M. et al. Analytical solution for nonlinear buckling of convex and concave auxetic-core toroidal shell segments with graphene-reinforced face sheets subjected to radial loads. Arch Appl Mech 93, 621–634 (2023). https://doi.org/10.1007/s00419-022-02288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02288-x

Keywords

Navigation