Skip to main content
Log in

Superharmonic-principal parametric joint resonance and stability of an axially variable-speed moving beam between current-carrying wires

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the magneto-elastic superharmonic-principal parametric joint resonance of an axially variable-speed moving beam is investigated, where magnetic force generated by parallel current-carrying wires is considered. Based on electromagnetic theory and Hamilton principle, the nonlinear forced vibration equation is derived, and the vibration differential equation is obtained using the Galerkin method. The multiple-scale method is used to solve the differential equation for the analytical solution, and the stability of the steady-state solutions is analyzed. Through an example, the curves of amplitude versus frequency, external excitation, axial velocity, current intensity, and beam position are obtained. The results show that the effect of axial velocity on resonance frequency is significantly larger than that of current intensity. In addition, the increase in current intensity leads to the decrease in amplitude, since the current-carrying wires act as electromagnetic damping. As the current intensity increases and the distance decreases, respectively, the system changes from quasi-periodic motion to single-frequency periodic motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Marynowski, K., Kapitaniak, T.: Zener internal damping in modelling of axially moving viscoelastic beam with time-dependent tension. Int. J. Non-Linear Mech. 42(1), 118–131 (2007)

    Article  MATH  Google Scholar 

  2. Chen, L.Q., Tang, Y.Q.: Combination and principal parametric resonances of axially accelerating viscoelastic beams: recognition of longitudinally varying tensions. J. Sound Vib. 330, 5598–5614 (2011)

    Article  Google Scholar 

  3. Parker, R.G., Lin, Y.: Parametric instability of axially moving media subjected to multifrequency tension and speed fluctuations. J. Appl. Mech. 68(1), 49–57 (2001)

    Article  MATH  Google Scholar 

  4. Ghayesh, M.H., Balar, S.: Non-linear parametric vibration and stability of axially moving visco-elastic Rayleigh beams. Int. J. Solids Struct. 45, 6451–6467 (2008)

    Article  MATH  Google Scholar 

  5. Tang, Y.Q., Chen, L.Q., Zhang, H.J., Yang, S.P.: Stability of axially accelerating viscoelastic Timoshenko beams: recognition of longitudinally varying tensions. Mech. Mach. Theory 62(4), 31–50 (2013)

    Article  Google Scholar 

  6. Ravindra, B., Zhu, W.D.: Low-dimensional chaotic response of axially accelerating continuum in the supercritical regime. Arch. Appl. Mech. 68, 195–205 (1998)

    Article  MATH  Google Scholar 

  7. Chakraborty, G., Mallik, A.K.: Parametrically excited non-linear traveling beams with and without external forcing. Nonlinear Dyn. 17(4), 301–324 (1998)

    Article  MATH  Google Scholar 

  8. Ӧz, H.R., Pakdemirli, M.: Vibrations of an axially moving beam with time-dependent velocity. J. Sound Vib. 227(2), 239–257 (1999)

    Article  Google Scholar 

  9. Ӧz, H.R., Pakdemirli, M., Boyacɪ, H.: Non-linear vibrations and stability of an axially moving beam with time-dependent velocity. Int. J. Non-Linear Mech. 36, 107–115 (2001)

    Article  Google Scholar 

  10. Feng, Z.H., Hu, H.Y.: Dynamic stability of a slender beam with internal resonance under a large linear motion. Chin. J. Theor. Appl. Mech. 34(3), 389–400 (2002)

    Google Scholar 

  11. Tang, Y.Q., Zhou, Y., Liu, S., Jiang, S.Y.: Complex stability boundaries of axially moving beams with interdependent speed and tension. Appl. Math. Model. 89, 208–224 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tang, Y.Q., Zhang, D.B., Gao, J.M.: Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dyn. 83(1–2), 401–418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, D.B., Tang, Y.Q., Liang, R.Q., Yang, L., Chen, L.Q.: Dynamic stability of an axially transporting beam with two-frequency parametric excitation and internal resonance. Eur. J. Mech./A Solids. 85, 104084 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sahoo, B., Panda, L.N., Pohit, G.: Combination, principal parametric and internal resonances of an accelerating beam under two frequency parametric excitation. Int. J. Non-Linear Mech. 78, 35–44 (2016)

    Article  Google Scholar 

  15. Lv, H.W., Li, L., Li, Y.H.: Non-linearly parametric resonances of an axially moving viscoelastic sandwich beam with time-dependent velocity. Appl. Math. Model. 53, 83–105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ding, H., Huang, L.L., Earl, D., Chen, L.Q.: Stress distribution and fatigue life of nonlinear vibration of an axially moving beam. Sci. China Technol. Sci. 62(7), 1123–1133 (2019)

    Article  Google Scholar 

  17. Hu, Y.D., Wang, J.: Principal-internal resonance of an axially moving current-carrying beam in magnetic field. Nonlinear Dyn. 90(1), 683–695 (2017)

    Article  Google Scholar 

  18. Hu, Y.D., Zhang, L.B.: Magneto-elastic vibration equations for axially moving conductive and magnetic beams. Appl. Math. Mech. 36(1), 70–77 (2015)

    Google Scholar 

  19. Hu, Y.D., Rong, Y.T.: Primary parametric resonance of an axially accelerating beam subjected to static loads. J. Theor. Appl. Mech. 56(3), 815–828 (2018)

    Article  Google Scholar 

  20. Nayak, B., Dwivedy, S.K., Murthy, K.S.R.K.: Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions. J. Sound Vib. 330(9), 1837–1859 (2011)

    Article  Google Scholar 

  21. Pratiher, B., Dwivedy, S.K.: Parametric instability of a cantilever beam with magnetic field and periodic axial load. J. Sound Vib. 305(4–5), 904–917 (2007)

    Article  Google Scholar 

  22. Pratiher, B.: Non-linear response of a magneto-elastic translating beam with prismatic joint for higher resonance conditions. Int. J. Non-Linear Mech. 46(5), 685–692 (2011)

    Article  Google Scholar 

  23. Zheng, X.J., Liu, X.E.: Analysis on dynamic characteristics for ferromagnetic conducting plates in a transverse uniform magnetic field. Acta Mech. Solida Sin. 21(3), 243–250 (2000)

    Google Scholar 

  24. Wang, L., Chen, H.H., He, X.D.: Active H͚ control of the vibration of an axially moving cantilever beam by magnetic force. Mech. Syst. Signal Process. 25(8), 2863–2878 (2011)

    Article  Google Scholar 

  25. Guo, S.H.: Electrodinamics. China Higher Education Press, Beijing (1997)

    Google Scholar 

  26. Cao, Z.Y.: Vibration Theory of Plates and Shells, p. 445. China Railway Publishing House, Beijing (1983)

    Google Scholar 

  27. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China with Grant No. 12172321, Hebei Provincial Natural Science Foundation of China with Grant No. A2020203007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Da Hu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A:Integral coefficient expression

\(A_{11} = \int_{0}^{l} {\frac{{{\text{d}}^{4} X_{1} }}{{{\text{d}} x^{4} }}} X_{1} {\text{d}} x\), \(B_{11} = \int_{0}^{l} {\frac{{{\text{d}}^{2} X_{1} }}{{{\text{d}} x^{2} }}} X_{1} {\text{d}} x\), \(C_{11} = \int_{0}^{l} {\frac{{{\text{d}} X_{1} }}{{{\text{d}} x}}} X_{1} {\text{d}} x\), \(D_{11} = \int_{0}^{l} {X_{1} } X_{1} {\text{d}} x\), \(E_{1} = \int_{0}^{l} {X_{1} } {\text{d}} x\), \(H_{11} = \int_{0}^{l} {X_{1}^{2} X_{1} {\text{d}} x}\)\(K_{11} = \int_{0}^{l} {\frac{{{\text{d}} X_{1} }}{{{\text{d}} x}}X_{1} } X_{1} {\text{d}} x\), \(M_{11} = \int_{0}^{l} {X_{1}^{3} X_{1} {\text{d}} x}\), \(N_{11} = \int_{0}^{l} {\frac{{{\text{d}} X_{1} }}{{{\text{d}} x}}} X_{1}^{2} X_{1} {\text{d}} x\), \(S_{11} = \int_{0}^{l} {\frac{{{\text{d}}^{2} X_{1} }}{{{\text{d}} x^{2} }}\left( {\frac{{dX_{1} }}{dx}} \right)}^{2} X_{1} {\text{d}} x\).

Appendix B: The parameters in Eq. (10)

\(q_{1} (\tau ) = \frac{{q_{1} (t)}}{h}\), \({\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \omega_{0} = p_{1}^{2} \sqrt {\frac{EI}{{\rho A}}{\kern 1pt} } {\kern 1pt}\), \({\kern 1pt} {\kern 1pt} {\kern 1pt} \tau = {\kern 1pt} \omega_{0} t{\kern 1pt}\), \({\kern 1pt} \eta = \frac{{c_{0} }}{{\omega_{0} }}\), \(\zeta = \frac{{F_{o} }}{{\rho A\omega_{0}^{2} }}\), \(\mu_{11}^{\prime } = \frac{{2c_{1} C_{11} }}{{\omega_{0} D_{11} }}\), \(\mu_{11} = \frac{{\sigma_{0} \mu_{0}^{2} \alpha_{1}^{2} D_{11} }}{{4{\uppi }^{2} \rho \omega_{0} D_{11} }} + \frac{{2c_{0} C_{11} }}{{\omega_{0} D_{11} }}\), \(g_{1}^{2} = \frac{{\eta^{2} B_{11} }}{{D_{11} }} - \frac{{\zeta B_{11} }}{{D_{11} }} + \frac{{EIA_{11} }}{{\rho A\omega_{0}^{2} D_{11} }} + \frac{{\mu_{0}^{2} \sigma_{0} \alpha_{1}^{2} c_{0} C_{11} }}{{4{\uppi }^{2} \rho \omega_{0}^{2} D_{11} }} + \frac{{c_{1}^{2} B_{11} }}{{2\omega_{0}^{2} D_{11} }}\), \({\kern 1pt} \Omega_{1} = \frac{{\omega_{1} }}{{\omega_{0} }}\), \({\kern 1pt} \Omega_{2} = \frac{{\omega_{2} }}{{\omega_{0} }}\), \({\kern 1pt} \Omega_{3} = \frac{{\omega_{3} }}{{\omega_{0} }}\),\(\delta_{111} = \frac{{\mu_{0}^{2} \sigma_{0} \alpha_{1}^{2} c_{1} C_{11} }}{{4{\uppi }^{2} \rho \omega_{0}^{2} D_{11} }} + \frac{{2c_{0} c_{1} B_{11} }}{{\omega_{0}^{2} D_{11} }}\),

\(\delta_{211} = \frac{{c_{1}^{2} B_{11} }}{{2\omega_{0}^{2} D_{11} }}\), \(\delta_{311} = \frac{{ - F_{1} B_{11} }}{{\rho A\omega_{0}^{2} D_{11} }}\), \(\delta_{411} = \frac{{ - c_{1} C_{11} }}{{\omega_{0} D_{11} }}\), \(\chi_{11} = \frac{{\mu_{0}^{2} \sigma_{0} \alpha_{2} c_{0} hK_{11} }}{{4{\uppi }^{2} \rho \omega_{0}^{2} D_{11} }}\), \(\chi_{11}^{\prime } = \frac{{\mu_{0}^{2} \sigma_{0} \alpha_{2} c_{1} hK_{11} }}{{4{\uppi }^{2} \rho \omega_{0}^{2} D_{11} }}\), \({\kern 1pt} n_{11} = \frac{{\mu_{0}^{2} \sigma_{0} \alpha_{3} c_{0} h^{2} N_{11} }}{{4{\uppi }^{2} \rho \omega_{0}^{2} D_{11} }} - \frac{{3ES_{11} h^{2} }}{{2\rho \omega_{0}^{2} D_{11} }}\), \({\kern 1pt} n_{11}^{\prime } = \frac{{\mu_{0}^{2} \sigma_{0} \alpha_{3} c_{1} h^{2} N_{11} }}{{4{\uppi }^{2} \rho \omega_{0}^{2} D_{11} }}\), \(h_{11} = \frac{{\mu {}_{0}^{2} \sigma_{0} \alpha_{2} H_{11} h}}{{4{\uppi }^{2} \rho D_{11} \omega_{0} }}\), \(m_{11} = \frac{{\mu_{0}^{2} \sigma_{0} \alpha_{3} M_{11} h^{2} }}{{4{\uppi }^{2} \rho D_{11} \omega_{0} }}\), \(f_{1} = \frac{{P_{0} E_{1} }}{{D_{11} \rho \omega_{0}^{2} hA}}\).

Appendix C: The parameters in Eq. (25)

$$j_{11} = \frac{1}{{g_{1} }}[ - \frac{1}{2}g_{1} \mu_{11} - \left( {\frac{{3m_{11} }}{4}a_{10}^{2} g_{1} + m_{11} \Lambda_{1}^{2} g_{1} + m_{11} \Lambda_{1}^{2} \Omega_{3} } \right) - \left( {\frac{{\delta_{111} }}{4} + \frac{{9n_{11}^{\prime } }}{16}a_{10}^{2} + \frac{{3n_{11}^{\prime } }}{2}\Lambda_{1}^{2} } \right)\sin 2\phi_{40}$$

\(+ \frac{{\mu_{11}^{\prime } }}{4}g_{1} \cos 2\phi_{40} - \frac{{\delta_{311} }}{4}\sin 2\phi_{40} ]\),

\(j_{12} = \frac{1}{{g_{1} }}\left[ { - 2\gamma_{20} \cos 2\phi_{40} + 2\gamma_{70} \sin 2\phi_{40} - 2\gamma_{30} \cos 2\phi_{40} - \gamma_{40} \cos \phi_{40} + \gamma_{50} \sin \phi_{40} - \gamma_{60} \cos \phi_{40} } \right]\),

\(j_{21} = \frac{1}{{g_{1} }}\left[ { - \left( {\frac{3}{4}n_{11} a_{10} } \right) - \left( {\frac{{3n_{11}^{\prime } }}{8}a_{10} } \right)\cos 2\phi_{40} + n_{11} \Lambda_{1}^{3} \frac{1}{{a_{10}^{2} }}\cos \phi_{40} - m_{11} \Lambda_{1}^{3} \Omega_{3} \frac{1}{{a_{10}^{2} }}\sin \phi_{40} + \frac{{n^{\prime}_{11} }}{2}\Lambda_{1}^{3} \frac{1}{{a_{10}^{2} }}\cos \phi_{40} } \right]\),

\(j_{22} = \frac{1}{{a_{10} g_{1} }}\left[ {2\gamma_{20} \sin 2\phi_{40} + 2\gamma_{70} \cos 2\phi_{40} + 2\gamma_{30} \sin 2\phi_{40} + \gamma_{40} \sin \phi_{40} + \gamma_{50} \cos \phi_{40} + \gamma_{60} \sin \phi_{40} } \right]\),

\(\gamma_{50} = m_{11} \Lambda_{1}^{3} \Omega_{3}\), \(\gamma_{60} = \frac{{n^{\prime}_{11} }}{2}\Lambda_{1}^{3}\), \(\gamma_{70} = - \frac{{\mu_{11}^{\prime } }}{4}a_{10} g_{1}\), \(\gamma_{20} = \frac{{\delta_{111} }}{4}a_{10} + \frac{{3n_{11}^{\prime } }}{16}a_{10}^{3} + \frac{{3n_{11}^{\prime } }}{2}a_{10} \Lambda_{1}^{2}\), \(\gamma_{30} = \frac{{\delta_{311} }}{4}a_{10}\), \(\gamma_{40} { = }n_{11} \Lambda_{1}^{3}\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XJ., Hu, YD. & Li, WQ. Superharmonic-principal parametric joint resonance and stability of an axially variable-speed moving beam between current-carrying wires. Arch Appl Mech 92, 3897–3912 (2022). https://doi.org/10.1007/s00419-022-02270-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02270-7

Keywords

Navigation