Skip to main content

Examination of non-Newtonian flow through stenosed arteries using an analytical model

Abstract

The steady, laminar, incompressible, axisymmetric stenotic blood flow is investigated with a non-polynomial solution assumption. The wall geometry of the stenosis is constructed as a fixed cosine curve. The rheology of blood is modeled as a generalized power-law fluid. The variations of the coefficients constructing both axial and radial velocity profiles through the stenotic tube are calculated with the examination of the analytical relations in closed form. The streamlines, separation and reattachment points, velocity profiles, and pressure variations are also obtained for the Newtonian cases in order to check the validation of the analytical approach. We observed that the results obtained are in good agreement with the ones that are widely available in the literature. Comparisons were made with non-Newtonian studies, which are rare for low Reynolds numbers in the literature, and with the numerical analyses performed in this study. As an important result of the analytical approach, it was concluded that the location of the separation and reattachment points and the existence of the separation-reattachment region are directly related to one of the coefficients in the non-polynomial solution assumption. Added to this, the ratio of the Reynolds number to the power-law exponent has a remarkable meaning in the characterization of the flow streamlines. Also, we introduce a rather simple formula of Reynolds number for blood-like power-law fluids.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Baskurt, O.K., Hardeman, M.R., Rampling, M.W.: Handbook of Hemorheology and Hemodynamics, vol. 69. IOS Press, Amsterdam (2007)

    Google Scholar 

  2. WHO: Cardiovascular Diseases. https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1. Accessed 2022-01-09

  3. van de Vosse, F.N., Stergiopulos, N.: Pulse wave propagation in the arterial tree. Annu. Rev. Fluid Mech. 43, 467–499 (2011). https://doi.org/10.1146/annurev-fluid-122109-160730

    MathSciNet  Article  MATH  Google Scholar 

  4. Fishbein, G.A., Fishbein, M.C.: Arteriosclerosis: rethinking the current classification. Arch. Pathol. Lab. Med. 133, 1309–1316 (2009)

    Article  Google Scholar 

  5. Rabson, S.: Arteriosclerosis: definitions. Am. J. Clin. Pathol. 24, 472–473 (1954)

    Article  Google Scholar 

  6. Mazumdar, J.: Biofluid Mechanics. World Scientific, Singapore (2015)

    MATH  Google Scholar 

  7. Clinic, M.: Arteriosclerosis/atherosclerosis. https://www.mayoclinic.org/diseases-conditions/arteriosclerosis-atherosclerosis/symptoms-causes/syc-20350569. Accessed: 2022-02-02

  8. Singer, C.J.: A short history of scientific ideas to 1900 (1959)

  9. Fung, Y.C.: Mechanical Properties of Living Tissues. Springer, New York (1993)

    Google Scholar 

  10. Parker, K.H.: A brief history of arterial wave mechanics. Med. Biol. Eng. Comput. 47, 111–118 (2009). https://doi.org/10.1007/s11517-009-0440-5

    Article  Google Scholar 

  11. Womersely, J.R.: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553–563 (1955). https://doi.org/10.1113/jphysiol.1955.sp005276

    Article  Google Scholar 

  12. Alfred L., Copley, G.S.: Flow Properties of Blood, and Other Biological Systems: Proceedings of an Informal Discussion Convened Jointly by the Faraday Society, Colloid and Biophysics Committee and the British Society of Rheology. Pergamon, London (1960)

  13. Merrill, E.W.: Rheology of Human Blood and Some Speculations on its Role in Vascular Homeostasis. Biomechanical Mechanisms in Vascular Homeostasis and Intravascular Thrombus (1965)

  14. Thurston, G.B.: The viscosity and viscoelasticity of blood in small diameter tubes. Microvasc. Res. 11, 133–146 (1976). https://doi.org/10.1016/0026-2862(76)90045-5

    Article  Google Scholar 

  15. Giddens, D., Mabon, R., Cassanova, R.: Measurements of disordered flows distal to subtotal vascular stenoses in the thoracic aortas of dogs. Circ. Res. 39, 112–119 (1976)

    Article  Google Scholar 

  16. Khalifa, A., Giddens, D.: Analysis of disorder in pulsatile flows with application to poststenotic blood velocity measurement in dogs. J. Biomech. 11, 129–141 (1978)

    Article  Google Scholar 

  17. Khalifa, A., Giddens, D.: Characterization and evolution of poststenotic flow disturbances. J. Biomech. 14, 279–296 (1981)

    Article  Google Scholar 

  18. Bharadvaj, B., Mabon, R., Giddens, D.: Steady flow in a model of the human carotid bifurcation. Part I-flow visualization. J. Biomech. 15, 349–362 (1982)

    Article  Google Scholar 

  19. Bharadvaj, B., Mabon, R., Giddens, D.: Steady flow in a model of the human carotid bifurcation. Part II-laser-doppler anemometer measurements. J. Biomech. 15, 363–378 (1982)

    Article  Google Scholar 

  20. Ku, D.N., Giddens, D.P.: Pulsatile flow in a model carotid bifurcation. Arterioscler. Off. J. Am. Heart Assoc. 3, 31–39 (1983)

    Google Scholar 

  21. Ku, D.N., Giddens, D.P.: Laser doppler anemometer measurements of pulsatile flow in a model carotid bifurcation. J. Biomech. 20, 407–421 (1987)

    Article  Google Scholar 

  22. Ahmed, S.A., Giddens, D.P.: Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers. J. Biomech. 16(7), 505–516 (1983)

    Article  Google Scholar 

  23. Ahmed, S.A., Giddens, D.P.: Flow disturbance measurements through a constricted tube at moderate Reynolds numbers. J. Biomech. 16(12), 955–963 (1983)

    Article  Google Scholar 

  24. Ku, D.N., Giddens, D.P., Zarins, C.K., Glagov, S.: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. Off. J. Am. Heart Assoc. 5(3), 293–302 (1985)

    Google Scholar 

  25. Taylor, C.A., Draney, M.T.: Experimental and computational methods in cardiovascular fluid mechanics. Annu. Rev. Fluid Mech. 36, 197–231 (2004)

    MathSciNet  Article  Google Scholar 

  26. Perktold, K., Hilbert, D.: Numerical simulation of pulsatile flow in a carotid bifurcation model. J. Biomed. Eng. 8(3), 193–199 (1986)

    Article  Google Scholar 

  27. Perktold, K., Resch, M.: Numerical flow studies in human carotid artery bifurcations: basic discussion of the geometric factor in atherogenesis. J. Biomed. Eng. 12(2), 111–123 (1990)

    Article  Google Scholar 

  28. Perktold, K., Resch, M., Florian, H.: Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J. Biomech. Eng. 113, 464–475 (1991). https://doi.org/10.1115/1.2895428

    Article  Google Scholar 

  29. Perktold, K., Peter, R.O., Resch, M., Langs, G.: Pulsatile non-Newtonian blood flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles. J. Biomed. Eng. 13(6), 507–515 (1991)

    Article  Google Scholar 

  30. Perktold, K., Resch, M., Peter, R.O.: Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J. Biomech. 24, 409–420 (1991)

    Article  Google Scholar 

  31. Perktold, K., Rappitsch, G.: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28, 845–856 (1995)

    Article  Google Scholar 

  32. Hughes, T.J., Liu, W.K., Zimmermann, T.K.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29, 329–349 (1981)

    MathSciNet  Article  Google Scholar 

  33. Donea, J., Giuliani, S., Halleux, J.-P.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33(1–3), 689–723 (1982)

    Article  Google Scholar 

  34. Leuprecht, A., Perktold, K., Prosi, M., Berk, T., Trubel, W., Schima, H.: Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J. Biomech. 35(2), 225–236 (2002)

    Article  Google Scholar 

  35. Heil, M.: An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 193(1–2), 1–23 (2004)

    MathSciNet  Article  Google Scholar 

  36. Figueroa, C.A., Vignon-Clementel, I.E., Jansen, K.E., Hughes, T.J.R., Taylor, C.A.: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195, 5685–5706 (2006). https://doi.org/10.1016/J.CMA.2005.11.011

    MathSciNet  Article  MATH  Google Scholar 

  37. Bazilevs, Y., Calo, V., Zhang, Y., Hughes, T.: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38, 310–322 (2006). https://doi.org/10.1007/s00466-006-0084-3

    MathSciNet  Article  MATH  Google Scholar 

  38. Taylor, C.A., Hughes, T.J., Zarins, C.K.: Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1–2), 155–196 (1998)

    MathSciNet  Article  Google Scholar 

  39. Taylor, C.A., Figueroa, C.: Patient-specific modeling of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 11, 109–134 (2009)

    Article  Google Scholar 

  40. Taylor, C.A., Steinman, D.A.: Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann. Biomed. Eng. 38(3), 1188–1203 (2010)

    Article  Google Scholar 

  41. Doost, S.N., Ghista, D., Su, B., Zhong, L., Morsi, Y.S.: Heart blood flow simulation: a perspective review. Biomed. Eng. Online 15(1), 1–28 (2016)

    Article  Google Scholar 

  42. de Zélicourt, D.A., Kurtcuoglu, V.: Patient-specific surgical planning, where do we stand? The example of the Fontan procedure. Ann. Biomed. Eng. 44(1), 174–186 (2016)

    Article  Google Scholar 

  43. Gray, R.A., Pathmanathan, P.: Patient-specific cardiovascular computational modeling: diversity of personalization and challenges. J. Cardiovasc. Transl. Res. 11(2), 80–88 (2018)

    Article  Google Scholar 

  44. van Bakel, T.M.J.: Computational modeling of hemodynamics for surgical planning and device development. Ph.D. Thesis, Utrecht University (2019). https://dspace.library.uu.nl/handle/1874/378068

  45. Ku, D.N.: Blood flow in arteries. Annu. Rev. Fluid Mech. 29(1), 399–434 (1997). https://doi.org/10.1146/annurev.fluid.29.1.399

    MathSciNet  Article  Google Scholar 

  46. Vignon-Clementel, I.E., Figueroa, C.A., Jansen, K.E., Taylor, C.A.: Outflow boundary conditions for 3d simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Eng. 13, 625–640 (2010). https://doi.org/10.1080/10255840903413565

    Article  Google Scholar 

  47. Romarowski, R.M., Lefieux, A., Morganti, S., Veneziani, A., Auricchio, F.: Patient-specific CFD modelling in the thoracic aorta with PC-MRI-based boundary conditions: a least-square three-element Windkessel approach. Int. J. Numer. Methods Biomed. Eng. 34, 3134 (2018). https://doi.org/10.1002/cnm.3134

    Article  Google Scholar 

  48. Young, D.F.: Effect of a time-dependent stenosis on flow through a tube. J. Eng. Ind. 90(2), 248–254 (1968). https://doi.org/10.1115/1.3604621

    Article  Google Scholar 

  49. Srivastava, V.P.: Arterial blood flow through a nonsymmetrical stenosis with applications. Jpn. J. Appl. Phys. 34, 6539–6545 (1995). https://doi.org/10.1143/jjap.34.6539

    Article  Google Scholar 

  50. Siouffi, M., Deplano, V., Pélissier, R.: Experimental analysis of unsteady flows through a stenosis. J. Biomech. 31(1), 11–19 (1997). https://doi.org/10.1016/S0021-9290(97)00104-8

    Article  Google Scholar 

  51. Chakravarty, S., Mandal, P.K.: Two-dimensional blood flow through tapered arteries under stenotic conditions. Int. J. Non-Linear Mech. 35(5), 779–793 (2000). https://doi.org/10.1016/S0020-7462(99)00059-1

    Article  MATH  Google Scholar 

  52. Forrester, J.H., Young, D.F.: Flow through a converging-diverging tube and its implications in occlusive vascular disease. I. Theoretical development. J. Biomech. 3(3), 297–305 (1970). https://doi.org/10.1016/0021-9290(70)90031-x

    Article  Google Scholar 

  53. Morgan, B.E., Young, D.F.: An integral method for the analysis of flow in arterial stenoses. Bull. Math. Biol. 36(1), 39–53 (1974). https://doi.org/10.1016/s0092-8240(74)80005-4

    Article  MATH  Google Scholar 

  54. Deshpande, M.D., Giddens, D.P., Mabon, R.F.: Steady laminar flow through modelled vascular stenoses. J. Biomech. 9(4), 165–174 (1976). https://doi.org/10.1016/0021-9290(76)90001-4

    Article  Google Scholar 

  55. MacDonald, D.A.: On steady flow through modelled vascular stenoses. J. Biomech. 12(1), 13–20 (1979). https://doi.org/10.1016/0021-9290(79)90004-6

    Article  Google Scholar 

  56. Shukla, J.B., Parihar, R.S., Rao, B.R.P.: Effects of stenosis on non-Newtonian flow of the blood in an artery. Bull. Math. Biol. 42(3), 283–294 (1980). https://doi.org/10.1016/S0092-8240(80)80051-6

    Article  MATH  Google Scholar 

  57. Chaturani, P., Ponnalagar Samy, R.: A study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases. Biorheology 22(6), 521–531 (1985). https://doi.org/10.3233/BIR-1985-22606

    Article  Google Scholar 

  58. Chaturani, P., Ponnalagar Samy, R.: Pulsatile flow of Casson’s fluid through stenosed arteries with applications to blood flow. Biorheology 23(5), 499–511 (1986). https://doi.org/10.3233/BIR-1986-23506

    Article  Google Scholar 

  59. Srivastava, L.M.: Flow of couple stress fluid through stenotic blood vessels. J. Biomech. 18(7), 479–485 (1985). https://doi.org/10.1016/0021-9290(85)90662-1

    Article  Google Scholar 

  60. Misra, J.C., Chakravarty, S.: Flow in arteries in the presence of stenosis. J. Biomech. 19(11), 907–918 (1986). https://doi.org/10.1016/0021-9290(86)90186-7

    Article  Google Scholar 

  61. Chakravarty, S., Datta, A.: Effects of stenosis on arterial rheology through a mathematical model. Math. Comput. Model. 12(12), 1601–1612 (1989). https://doi.org/10.1016/0895-7177(89)90336-1

    Article  MATH  Google Scholar 

  62. Misra, J.C., Patra, M.K., Misra, S.C.: A non-Newtonian fluid model for blood flow through arteries under stenotic conditions. J. Biomech. 26(9), 1129–1141 (1993). https://doi.org/10.1016/S0021-9290(05)80011-9

    Article  Google Scholar 

  63. Chakravarty, S., Mandal, P.K.: Mathematical modelling of blood flow through an overlapping arterial stenosis. Math. Comput. Model. 19(1), 59–70 (1994). https://doi.org/10.1016/0895-7177(94)90116-3

    Article  MATH  Google Scholar 

  64. Chakravarty, S., Datta, A., Mandal, P.K.: Analysis of nonlinear blood flow in a stenosed flexible artery. Int. J. Eng. Sci. 33(12), 1821–1837 (1995). https://doi.org/10.1016/0020-7225(95)00022-P

    Article  MATH  Google Scholar 

  65. Chakravarty, S., Mandal, P.K.: An analysis of pulsatile flow in a model aortic bifurcation. Int. J. Eng. Sci. 35(4), 409–422 (1997). https://doi.org/10.1016/S0020-7225(96)00081-X

    Article  MATH  Google Scholar 

  66. Pralhad, R.N., Schultz, D.H.: Modeling of arterial stenosis and its applications to blood diseases. Math. Biosci. 190(2), 203–220 (2004). https://doi.org/10.1016/j.mbs.2004.01.009

    MathSciNet  Article  MATH  Google Scholar 

  67. Chakravarty, S., Mandal, P.K.: Unsteady flow of a two-layer blood stream past a tapered flexible artery under stenotic conditions. Comput. Methods Appl. Math. 4(4), 391–409 (2004). https://doi.org/10.2478/cmam-2004-0022

    MathSciNet  Article  MATH  Google Scholar 

  68. Mandal, P.K.: An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis. Int. J. Non-Linear Mech. 40(1), 151–164 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.07.007

    Article  MATH  Google Scholar 

  69. Ikbal, M.A., Chakravarty, S., Wong, K.K.L., Mazumdar, J., Mandal, P.K.: Unsteady response of non-Newtonian blood flow through a stenosed artery in magnetic field. J. Comput. Appl. Math. 230(1), 243–259 (2009). https://doi.org/10.1016/j.cam.2008.11.010

    MathSciNet  Article  MATH  Google Scholar 

  70. Tu, C., Deville, M., Dheur, L., Vanderschuren, L.: Finite element simulation of pulsatile flow through arterial stenosis. J. Biomech. 25(10), 1141–1152 (1992). https://doi.org/10.1016/0021-9290(92)90070-H

    Article  Google Scholar 

  71. Tu, C., Deville, M.: Pulsatile flow of non-Newtonian fluids through arterial stenoses. J. Biomech. 29(7), 899–908 (1996). https://doi.org/10.1016/0021-9290(95)00151-4

    Article  Google Scholar 

  72. Olufsen, M.S., Peskin, C.S., Kim, W.Y., Pedersen, E.M., Nadim, A., Larsen, J.: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28, 1281–1299 (2000). https://doi.org/10.1114/1.1326031

    Article  Google Scholar 

  73. Long, Q., Xu, X.Y., Ramnarine, K.V., Hoskins, P.: Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34(10), 1229–1242 (2001). https://doi.org/10.1016/s0021-9290(01)00100-2

    Article  Google Scholar 

  74. Li, M.X., Beech-Brandt, J.J., John, L.R., Hoskins, P.R., Easson, W.J.: Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. J. Biomech. 40(16), 3715–3724 (2007). https://doi.org/10.1016/j.jbiomech.2007.06.023

    Article  Google Scholar 

  75. Buchanan, J.R., Kleinstreuer, C., Comer, J.K.: Rheological effects on pulsatile hemodynamics in a stenosed tube. Comput. Fluids 29(6), 695–724 (2000). https://doi.org/10.1016/S0045-7930(99)00019-5

    Article  MATH  Google Scholar 

  76. Chen, J., Lu, X.-Y., Wang, W.: Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. J. Biomech. 11(39), 1983–1995 (2006). https://doi.org/10.1016/j.jbiomech.2005.06.012

    Article  Google Scholar 

  77. Razavi, A., Shirani, E., Sadeghi, M.R.: Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J. Biomech. 44(11), 2021–2030 (2011). https://doi.org/10.1016/j.jbiomech.2011.04.023

    Article  Google Scholar 

  78. Tian, F.-B., Zhu, L., Fok, P.-W., Lu, X.-Y.: Simulation of a pulsatile non-Newtonian flow past a stenosed 2d artery with atherosclerosis. Comput. Biol. Med. 43(9), 1098–1113 (2013). https://doi.org/10.1016/j.compbiomed.2013.05.023

    Article  Google Scholar 

  79. Jahangiri, M., Saghafian, M., Sadeghi, M.R.: Numerical simulation of non-Newtonian models effect on hemodynamic factors and pulsatile blood flow in elastic stenosed artery. J. Mech. Sci. Technol. 31(2), 1003–1013 (2017). https://doi.org/10.1016/j.compbiomed.2013.05.023

    Article  Google Scholar 

  80. Guerciotti, B., Vergara, C.: Computational comparison between Newtonian and non-Newtonian blood rheologies in stenotic vessels. Biomed. Technol. 84, 169–182 (2018). https://doi.org/10.1007/978-3-319-59548-1_10

    Article  Google Scholar 

  81. Bessonov, N., Sequeira, A., Simakov, S., Vassilevskii, Yu., Volpert, V.: Methods of blood flow modelling. Math. Model. Nat. Phenom. 11(1), 1–25 (2016). https://doi.org/10.1051/mmnp/201611101

    MathSciNet  Article  MATH  Google Scholar 

  82. Quarteroni, A., Manzoni, A., Vergara, C.: The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer. 26, 365–590 (2017)

    MathSciNet  Article  Google Scholar 

  83. Hron, J., Málek, J., Turek, S.: A numerical investigation of flows of shear-thinning fluids with applications to blood rheology. Int. J. Numer. Methods Fluids 32(7), 863–879 (2000)

    Article  Google Scholar 

  84. Neofytou, P.: Comparison of blood rheological models for physiological flow simulation. Biorheology 41(6), 693–714 (2004)

    Google Scholar 

  85. Shibeshi, S.S., Collins, W.E.: The rheology of blood flow in a branched arterial system. Appl. Rheol. 15(6), 398–405 (2005). https://doi.org/10.1515/arh-2005-0020

    Article  Google Scholar 

  86. Yilmaz, F., Gundogdu, M.Y.: A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea-Aust. Rheol. J. 20(4), 197–211 (2008)

    Google Scholar 

  87. Hundertmark-Zaušková, A., Lukáčová-Medvid’ová, M.: Numerical study of shear-dependent non-Newtonian fluids in compliant vessels. Comput. Math. Appl. 60(3), 572–590 (2010)

    MathSciNet  Article  Google Scholar 

  88. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2006)

    Google Scholar 

  89. Madlener, K., Frey, B., Ciezki, H.: Generalized Reynolds number for non-Newtonian fluids. Progr. Propul. Phys. 1, 237–250 (2009)

    Article  Google Scholar 

  90. Sparrow, E.M., Abraham, J.P., Minkowycz, W.J.: Flow separation in a diverging conical duct: effect of Reynolds number and divergence angle. Int. J. Heat Mass Transf. 52(13), 3079–3083 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.010

    Article  MATH  Google Scholar 

  91. Walburn, F.J., Schneck, D.J.: A constitutive equation for whole human blood. Biorheology 13(3), 201–210 (1976). https://doi.org/10.3233/bir-1976-13307

    Article  Google Scholar 

  92. Sankar, S., Lee, U.: Mathematical modeling of pulsatile flow of non-Newtonian fluid in stenosed arteries. Commun. Nonlinear Sci. Numer. Simul. 14, 2971–2981 (2009). https://doi.org/10.1016/j.cnsns.2008.10.015

    Article  MATH  Google Scholar 

  93. Xu, X.Y., Collins, M.W.: A review of the numerical analysis of blood flow in arterial bifurcations. Proc. Inst. Mech. Eng. [H] 204(4), 205–216 (1990). https://doi.org/10.1243/PIME_PROC_1990_204_258_02

    Article  Google Scholar 

  94. Hellevik, L.R.: Generalized Newtonian Model. https://folk.ntnu.no/leifh/teaching/tkt4150/._main022.html. Accessed: 2022-01-09

  95. Young, D.F., Tsai, F.Y.: Flow characteristics in models of arterial stenoses—I. Steady flow. J. Biomech. 6(4), 395–410 (1973). https://doi.org/10.1016/0021-9290(73)90099-7

    Article  Google Scholar 

  96. Zendehbudi, G.R., Moayeri, M.S.: Comparison of physiological and simple pulsatile flows through stenosed arteries. J. Biomech. 32(9), 959–65 (1999). https://doi.org/10.1016/s0021-9290(99)00053-6

    Article  Google Scholar 

  97. Khandelwal, V., Dhiman, A., Baranyi, L.: Laminar flow of non-Newtonian shear-thinning fluids in a t-channel. Comput. Fluids (2015). https://doi.org/10.1016/j.compfluid.2014.11.030

    MathSciNet  Article  MATH  Google Scholar 

  98. Fu, S.C., Leung, W.W.F., So, R.M.C.: A lattice Boltzmann and immersed boundary scheme for model blood flow in constricted pipes: part 1—steady flow. Commun. Comput. Phys. 14(1), 126–152 (2013). https://doi.org/10.4208/cicp.171011.180712a

    MathSciNet  Article  MATH  Google Scholar 

  99. Varghese, S., Frankel, S., Fischer, P.: Direct numerical simulation of stenotic flows. Part 1. Steady flow. J. Fluid Mech. 582, 253–280 (2007). https://doi.org/10.1017/S0022112007005848

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank TUBITAK (The Scientific and Technological Research Council of Turkey) for providing scholarship, Emre Ata for his technical assistance and providing language help, and also thank Burhan Tiryakioğlu for assistance with the formatting of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elif Kayaalp Ata or İlyas Kandemir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kayaalp Ata, E., Kandemir, İ. Examination of non-Newtonian flow through stenosed arteries using an analytical model. Arch Appl Mech (2022). https://doi.org/10.1007/s00419-022-02230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00419-022-02230-1

Keywords

  • Blood flow
  • Non-Newtonian
  • Stenosis
  • Power-law
  • Axial velocity
  • Radial velocity