Skip to main content
Log in

Natural property and vibration suppression of fluid-conveying phononic crystal pipes with axial periodic composites based on Timoshenko beam model

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Phononic crystal (PC) structures have been applied in various engineerings since their vibration can be suppressed efficiently by the periodicity of the physical and geometrical properties. Inspired by this idea, in this paper, the free vibration and band gap (BG) characteristics of a fluid-conveying PC pipe composed of periodically varying materials are explored. The dispersion equation of the periodic pipe conveying fluid is established based on the Timoshenko beam model. By applying the spectral element method (SEM) in conjunction with the finite element method (FEM), the natural frequencies and vibration modes of the pipe are obtained, and the BG regions and vibration attenuation shapes are further achieved. The Euler–Bernoulli (E–B) beam model is also introduced for comparison. Comprehensive parametric studies are conducted. It is found that different BG location and width are presented for the Timoshenko and E-B pipe models. The number, physical and geometrical properties of the substructures and the fluid–structure interaction all have significant effects on the natural frequency, mode shape and BG performance of the PC pipe. In addition, as compared with the traditional transfer matrix method and FEM, the SEM is demonstrated a more efficient procedure to deal with not only the BG characteristics, but also natural properties of the PC dynamical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Paїdoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow, 2nd edn. Academic Press, London (2014)

    Google Scholar 

  2. Thota, M., Wang, K.W.: Tunable waveguiding in origami phononic structures. J. Sound Vib. 430, 93–100 (2018)

    Article  Google Scholar 

  3. Yang, X.D., Cui, Q.D., Qian, Y.J., Zhang, W., Lim, C.W.: Modulating band gap structure by parametric excitations. ASME J. Appl. Mech. 85(6), 061012 (2018)

    Article  Google Scholar 

  4. Yang, X.D., Cui, Q.D., Zhang, W.: Wave manipulation of two-dimensional periodic lattice by parametric excitation. ASME J. Appl. Mech. 87(1), 011008 (2020)

    Article  Google Scholar 

  5. Salari-Sharif, L., Haghpanah, B., Izard, A.G., Tootkaboni, M., Valdevit, L.: Negative-stiffness inclusions as a platform for real-time tunable phononic metamaterials. Phys. Rev. Appl. 11(2), 024062 (2019)

    Article  Google Scholar 

  6. Qian, Y.J., Cui, Q.D., Yang, X.D., Zhang, W.: Manipulating transverse waves through 1D metamaterial by longitudinal vibrations. Int. J. Mech. Sci. 168, 105296 (2020)

    Article  Google Scholar 

  7. Miao, L.C., Li, C., Lei, L.J., Fang, H.L., Liang, X.D.: A new periodic structure composite material with quasi-phononic crystals. Phys. Lett. A 384(25), 126594 (2020)

    Article  MATH  Google Scholar 

  8. Panahi, E., Hosseinkhani, A., Khansanami, M.F., Younesian, D., Ranjbar, M.: Novel cross shape phononic crystals with broadband vibration wave attenuation characteristic: design, modeling and testing. Thin-Walled Struct. 163, 107665 (2021)

    Article  Google Scholar 

  9. Lyu, X.F., Ding, Q., Yang, T.Z.: Merging phononic crystals and acoustic black holes. Appl. Math. Mech.-Engl. 41(2), 279–288 (2020)

    Article  MathSciNet  Google Scholar 

  10. Tang, L.L., Cheng, L., Chen, K.: Complete sub-wavelength flexural wave band gaps in plates with periodic acoustic black holes. J. Sound Vib. 502, 116102 (2021)

    Article  Google Scholar 

  11. Li, H.Z., Ding, Q., Ma, Z.S., Ren, Q.Q., Lyu, X., Qin, Z.H., Wei, L., Zur, K.K., Yang, T.Z.: Breaking reciprocity and preserving-frequency using linear acoustic metamaterials. Int. J. Mod. Phys. B 35(6), 2150089 (2021)

    Article  MathSciNet  Google Scholar 

  12. He, M.X., Ding, Q.: Data-driven optimization of the periodic beam with multiple acoustic black holes. J. Sound Vib. 493, 115816 (2021)

    Article  Google Scholar 

  13. Koo, G.H., Park, Y.S.: Vibration reduction by using periodic supports in a piping system. J. Sound Vib. 210(1), 53–68 (1998)

    Article  Google Scholar 

  14. Dai, H.L., Wang, L., Ni, Q.: Dynamics of a fluid-conveying pipe composed of two different materials. Int. J. Eng. Sci. 73, 67–76 (2013)

    Article  Google Scholar 

  15. Yu, D.L., Wen, J.H., Zhao, H.G., Liu, Y.Z., Wen, X.S.: Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. J. Sound Vib. 318(1–2), 193–205 (2008)

    Article  Google Scholar 

  16. Yu, D.L., Wen, J.H., Zhao, H.G., Liu, Y.Z., Wen, X.S.: Flexural vibration band gap in a periodic fluid-conveying pipe system based on the Timoshenko beam theory. ASME J. Vib. Acoust. 133(1), 014502 (2011)

    Article  Google Scholar 

  17. Yu, D.L., Paїdoussis, M.P., Shen, H.J., Wang, L.: Dynamic stability of periodic pipes conveying fluid. ASME J. Appl. Mech. 81(1), 011008 (2014)

    Article  Google Scholar 

  18. Yu, D.L., Shen, H.J., Liu, J.W., Yin, J.F., Zhang, Z.F., Wen, J.H.: Propagation of acoustic waves in a fluid-filled pipe with periodic elastic Helmholtz resonators. Chin. Phys. B 27(6), 064301 (2018)

    Article  Google Scholar 

  19. Wen, J.H., Shen, H.J., Yu, D.L., Wen, X.S.: Theoretical and experimental investigation of flexural wave propagating in a periodic pipe with fluid-filled loading. Chin. Phys. Lett. 27(11), 114301 (2010)

    Article  Google Scholar 

  20. Wei, Z.D., Li, B.R., Du, J.M., Yang, G.: Theoretical and experimental investigation of flexural vibration transfer properties of high-pressure periodic pipe. Chin. Phys. Lett. 33(4), 044303 (2016)

    Article  Google Scholar 

  21. Shen, H.J., Wen, J.H., Yu, D.L., Yuan, B., Wen, X.S.: Stability of fluid-conveying periodic shells on an elastic foundation with external loads. J. Fluids Struct. 46, 134–148 (2014)

    Article  Google Scholar 

  22. Shen, H.J., Wen, J.H., Yu, D.L., Asgari, M., Wen, X.S.: Control of sound and vibration of fluid-filled cylindrical shells via periodic design and active control. J. Sound Vib. 332(18), 4193–4209 (2013)

    Article  Google Scholar 

  23. Shen, H.J., Wen, J.H., Yu, D.L., Wen, X.S.: Stability of clamped-clamped periodic functionally graded material shells conveying fluid. J. Vib. Control 21(15), 3034–3046 (2015)

    Article  MathSciNet  Google Scholar 

  24. Hu, B., Zhu, F.L., Yu, D.L., Liu, J.W., Zhang, Z.F., Zhong, J., Wen, J.H.: Impact vibration properties of locally resonant fluid-conveying pipes. Chin. Phys. B 29(12), 124301 (2020)

    Article  Google Scholar 

  25. Hu, B., Zhang, Z.F., Yu, D.L., Liu, J.W., Zhu, F.L.: Broadband bandgap and shock vibration properties of acoustic metamaterial fluid-filled pipes. J. Appl. Phys. 128(20), 205103 (2020)

    Article  Google Scholar 

  26. Liang, F., Yang, X.D.: Wave properties and band gap analysis of deploying pipes conveying fluid with periodic varying parameters. Appl. Math. Model. 77, 522–538 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liang, F., Chen, Y., Gong, J.J., Qian, Y.: Vibration self-suppression of spinning fluid-conveying pipes composed of periodic composites. Int. J. Mech. Sci. 220, 107150 (2022)

    Article  Google Scholar 

  28. Dai, J.Y., Liu, Y.S., Tong, G.J.: Stability analysis of a periodic fluid-conveying heterogeneous nanotube system. Acta Mech. Solida Sin. 33(6), 756–769 (2020)

    Article  Google Scholar 

  29. Lyu, X.F., Chen, F., Ren, Q.Q., Tang, Y., Ding, Q., Yang, T.Z.: Ultra-thin piezoelectric lattice for vibration suppression in pipe conveying fluid. Acta Mech. Solida Sin. 33(6), 770–780 (2020)

    Article  Google Scholar 

  30. Duan, N., Lin, S., Wu, Y.H., Sun, X.M., Zhong, C.Q.: Stability analysis of a pipe conveying fluid with a nonlinear energy sink. Sci. China-Inform. Sci. 64(5), 152201 (2021)

    Article  MathSciNet  Google Scholar 

  31. Giacobbi, D.B., Semler, C., Paїdoussis, M.P.: Dynamics of pipes conveying fluid of axially varying density. J. Sound Vib. 473, 115202 (2020)

    Article  Google Scholar 

  32. Dal Poggetto, V.F., Serpa, A.L.: Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method. J. Sound Vib. 495, 115909 (2021)

    Article  Google Scholar 

  33. Wu, L.Y., Wu, M.L., Chen, L.W.: The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer. Smart Mater. Struct. 18(1), 015011 (2009)

    Article  Google Scholar 

  34. Xiao, Y., Wen, J.H.: Closed-form formulas for bandgap estimation and design of metastructures undergoing longitudinal or torsional vibration. J. Sound Vib. 485, 115578 (2020)

    Article  Google Scholar 

  35. Xiao, Y., Wang, S.X., Li, Y.Q., Wen, J.H.: Closed-form bandgap design formulas for beam-type metastructures. Mech. Syst. Signal Process. 159, 107777 (2021)

    Article  Google Scholar 

  36. Sun, H.W., Du, X.W., Pai, P.F.: Theory of metamaterial beams for broadband vibration absorption. J. Intel. Mat. Syst. Str. 21(11), 1085–1101 (2010)

    Article  Google Scholar 

  37. Wang, T., Sheng, M.P., Qin, Q.H.: Multi-flexural band gaps in an Euler-Bernoulli beam with lateral local resonators. Phys. Lett. A 380(4), 525–529 (2016)

    Article  Google Scholar 

  38. Alsaffar, Y., Sassi, S., Baz, A.: Band gap characteristics of periodic gyroscopic systems. J. Sound Vib. 435, 301–322 (2018)

    Article  Google Scholar 

  39. Lee, U., Kim, D., Park, I.: Dynamic modeling and analysis of the PZT-bonded composite Timoshenko beams: spectral element method. J. Sound Vib. 332(6), 1585–1609 (2013)

    Article  Google Scholar 

  40. Park, I., Lee, U.: Dynamic analysis of smart composite beams by using the frequency-domain spectral element method. J. Mech. Sci. Technol. 26(8), 2511–2521 (2012)

    Article  Google Scholar 

  41. Lee, U., Park, J.: Spectral element modelling and analysis of a pipeline conveying internal unsteady fluid. J. Fluids Struct. 22(2), 273–292 (2006)

    Article  Google Scholar 

  42. Lee, U.: Spectral Element Method in Structural Dynamics. Wiley, Singapore (2009)

    Book  MATH  Google Scholar 

  43. Xiao, Y., Wen, J.H., Yu, D.L., Wen, X.S.: Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms. J. Sound Vib. 332(4), 867–893 (2013)

    Article  Google Scholar 

  44. Zuo, S.L., Li, F.M., Zhang, C.Z.: Numerical and experimental investigations on the vibration band-gap properties of periodic rigid frame structures. Acta Mech. 227(6), 1653–1669 (2016)

    Article  MathSciNet  Google Scholar 

  45. Fabro, A.T., Beli, D., Ferguson, N.S., Arruda, J.R.F., Mace, B.R.: Wave and vibration analysis of elastic metamaterial and phononic crystal beams with slowly varying properties. Wave Motion 103, 102728 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  46. Pereira, F.N., Dos Santos, J.M.C.: Phononic crystal investigation using a fluid-structure circular cylindrical shell spectral element. Mech. Syst. Signal Process. 148, 107100 (2021)

    Article  Google Scholar 

  47. Yuan, J.R., Fan, X., Shu, S., Ding, H., Chen, L.Q.: Free vibration analysis and numerical simulation of slightly curved pipe conveying fluid based on timoshenko beam theory. Int. J. Appl. Mech. 14(02), 2250014 (2022)

    Article  Google Scholar 

  48. Tan, X., Ding, H., Chen, L.Q.: Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model. J. Sound Vib. 455, 241–255 (2019)

    Article  Google Scholar 

  49. Xia, W., Wang, L.: Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory. Microfluid. Nanofluid. 9(4–5), 955–962 (2010)

    Article  Google Scholar 

  50. Li, B.H., Gao, H.S., Zhai, H.B., Liu, Y.S., Yue, Z.F.: Free vibration analysis of multi-span pipe conveying fluid with dynamic stiffness method. Nucl. Eng. Des. 241(3), 666–671 (2011)

    Article  Google Scholar 

  51. Graff, K.F.: Wave Motion in Elastic Solids. Oxford University Press, Oxford (1975)

    MATH  Google Scholar 

  52. Mace, B.R.: Wave reflection and transmission in beams. J. Sound Vib. 97(2), 237–246 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 12072311 and 11972050) and High-Level Talents Program of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Chen, Y., Zhao, Y. et al. Natural property and vibration suppression of fluid-conveying phononic crystal pipes with axial periodic composites based on Timoshenko beam model. Arch Appl Mech 92, 3093–3108 (2022). https://doi.org/10.1007/s00419-022-02220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02220-3

Keywords

Navigation