Skip to main content
Log in

Free vibration analysis of elastic metamaterial circular curved beams with locally resonant microstructures

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this study, in-plane free vibration of elastic metamaterial circular curved beams is investigated. The beams are made of three-dimensional periodic arrangement of the coated spherical particles embedded in a matrix. The two-step homogenization method is utilized to obtain the effective material properties of the beams. The Euler–Bernoulli curved beam theory with the assumption of an inextensible centerline is used to derive the governing equation of motion of the beams. Also, the finite element method (FEM) is utilized to compute natural frequencies of the beams. First, the numerical results are compared with those computed in the literature and also calculated via commercial FEM software, and then, a parametric study is performed to examine the influences of various design parameters on the natural frequencies of the curved beams. The obtained results show that the metamaterial curved beams can be used in diverse future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  Google Scholar 

  2. Pennec, Y., Vasseur, J.O., Djafari-Rouhani, B., Dobrzyński, L., Deymier, P.A.: Two-dimensional phononic crystals: examples and applications. Surf. Sci. Rep. 65, 229–291 (2010)

    Article  Google Scholar 

  3. Valipour, A., Kargozarfard, M.H., Rakhshi, M., Yaghootian, A., Sedighi, H.M.: Metamaterials and their applications: an overview. Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. (2021). https://doi.org/10.1177/1464420721995858

    Article  Google Scholar 

  4. Huang, H.H., Sun, C.T.: Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Phil. Mag. 91, 981–996 (2011)

    Article  Google Scholar 

  5. Comi, C., Driemeier, L.: Wave propagation in cellular locally resonant metamaterials. Lat. Am. J. Solids Struct. 15, 38 (2018)

    Article  Google Scholar 

  6. An, X., Fan, H., Zhang, C.: Elastic wave and vibration bandgaps in two-dimensional acoustic metamaterials with resonators and disorders. Wave Motion 80, 69–81 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jaberzadeh, M., Li, B., Tan, K.T.: Wave propagation in an elastic metamaterial with anisotropic effective mass density. Wave Motion 89, 131–141 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ghavanloo, E., Fazelzadeh, S.A.: Wave propagation in one-dimensional infinite acoustic metamaterials with long-range interactions. Acta Mech. 230, 4453–4461 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yves, S., Berthelot, T., Lerosey, G., Lemoult, F.: Locally polarized wave propagation through crystalline metamaterials. Phys. Rev. B 101, 035127 (2020)

    Article  Google Scholar 

  10. Zeighami, F., Palermo, A., Marzani, A.: Rayleigh waves in locally resonant metamaterials. Int. J. Mech. Sci. 195, 106250 (2021)

    Article  Google Scholar 

  11. Sun, H., Du, X., Pai, P.F.: Theory of metamaterial beams for broadband vibration absorption. J. Intell. Mater. Syst. Struct. 21, 1085–1101 (2010)

    Article  Google Scholar 

  12. Pai, P.F., Peng, H., Jiang, S.: Acoustic metamaterial beams based on multi-frequency vibration absorbers. Int. J. Mech. Sci. 79, 195–205 (2014)

    Article  Google Scholar 

  13. Hao, H., Pai, P.F., Deng, H.: Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression. Int. J. Mech. Sci. 103, 104–114 (2015)

    Article  Google Scholar 

  14. Nouh, M., Aldraihem, O., Baz, A.: Wave propagation in metamaterial plates with periodic local resonances. J. Sound Vib. 341, 53–73 (2015)

    Article  Google Scholar 

  15. Nobrega, E.D., Gautier, F., Pelat, A., Dos Santos, J.M.C.: Vibration band gaps for elastic metamaterial rods using wave finite element method. Mech. Syst. Signal Process. 79, 192–202 (2016)

    Article  Google Scholar 

  16. Sugino, C., Leadenham, S., Ruzzene, M., Erturk, A.: On the mechanism of bandgap formation in locally resonant finite elastic metamaterials. J. Appl. Phys. 120, 134501 (2016)

    Article  Google Scholar 

  17. Shen, X.H., Sun, C.T., Barnhart, M.V., Huang, G.L.: Analysis of dynamic behavior of the finite elastic metamaterial-based structure with frequency-dependent properties. J. Vib. Acoust. 140, 031012 (2018)

    Article  Google Scholar 

  18. Zheng, Z., Shu, H., An, S., Mu, D., Zhao, L., Su, Y.: Vibration characteristics of elastic metamaterial rod. IOP Conf. Ser. Mater. Sci. Eng. 649, 012009 (2019)

    Article  Google Scholar 

  19. Mu, D., Shu, H., An, S., Zhao, L.: Free and steady forced vibration characteristics of elastic metamaterial beam. AIP Adv. 10, 035304 (2020)

    Article  Google Scholar 

  20. Shu, H., Xu, Y., Mu, D., Wang, X., Wang, Y.: Analysis of vibration characteristics of elastic metamaterial sandwich beam. Int. J. Mod. Phys. B. 35(11), 2150160 (2021)

    Article  Google Scholar 

  21. Sangiuliano, L., Claeys, C., Deckers, E., Desmet, W.: Influence of boundary conditions on the stop band effect in finite locally resonant metamaterial beams. J. Sound Vib. 473, 115225 (2020)

    Article  Google Scholar 

  22. Meng, J.C., Ru, C.Q.: Effective mass density of rigid sphere-reinforced elastic composites. Meccanica 56, 1209–1221 (2021)

    Article  MathSciNet  Google Scholar 

  23. Cinefra, M., de Miguel, A.G., Filippi, M., Houriet, C., Pagani, A., Carrera, E.: Homogenization and free-vibration analysis of elastic metamaterial plates by carrera unified formulation finite elements. Mech. Adv. Mater. Struct. 28, 476–485 (2021)

    Article  Google Scholar 

  24. Nateghi, A., Van Belle, L., Claeys, C., Deckers, E., Pluymers, B., Desmet, W.: Wave propagation in locally resonant cylindrically curved metamaterial panels. Int. J. Mech. Sci. 127, 73–90 (2017)

    Article  Google Scholar 

  25. Yu, J., Nerse, C., Chang, K.J., Wang, S.: A framework of flexible locally resonant metamaterials for attachment to curved structures. Int. J. Mech. Sci. 204, 106533 (2021)

    Article  Google Scholar 

  26. Wang, G., Shao, L.H., Liu, Y.Z., Wen, J.H.: Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals. Chin. Phys. 15, 1843–1848 (2006)

    Article  Google Scholar 

  27. Soedel, W.: Vibrations of Shells and Plates, CRC Press, (2004)

  28. Ghavanloo, E., Rafiei, M., Daneshmand, F.: In-plane vibration analysis of curved carbon nanotubes conveying fluid embedded in viscoelastic medium. Phys. Lett. A 375, 1994–1999 (2011)

    Article  Google Scholar 

  29. Yang, F., Sedaghati, R., Esmailzadh, E.: Free in-plane vibration of general curved beams using finite element method. J. Sound Vib. 318, 850–867 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karampour, S., Ghavanloo, E. & Fazelzadeh, S.A. Free vibration analysis of elastic metamaterial circular curved beams with locally resonant microstructures. Arch Appl Mech 93, 323–333 (2023). https://doi.org/10.1007/s00419-022-02208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02208-z

Keywords

Navigation