Skip to main content
Log in

Design of elastic wave metasurfaces based on lattice truss material

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Periodic truss materials can be regarded as a kind of phononic crystals, which have both excellent elastic wave band gap properties and good design ability. By reasonably changing the parameters of truss materials, the dispersion relationship of regular distribution can be achieved, so as to realize the tuning of different phases. Due to the variety of microstructure configurations of truss materials, it provides a broad space for the design of acoustic/elastic metasurfaces. In this paper, we design a new type of lattice truss material metasurfaces, which can adjust the phase 0–2π range of flexural wave by adjusting the vertex angle of single-cell without changing the external size of phononic crystal. According to the Generalized Snell's Law, the abnormal refraction, beam focusing and non-paraxial self-acceleration of flexural waves can be realized by reasonable arrangement of truss materials with different vertex angles. Moreover, the operating frequency domain of metasurfaces can be widened and adjusted by increasing or decreasing the number of truss material microstructure arrays. This provides more possibilities for the design of elastic wave metasurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wen, J., et al.: Exploration of amphoteric and negative refraction imaging of acoustic sources via active metamaterials. Phys. Lett. A 337(34–36), 2199–2206 (2013)

    Article  MathSciNet  Google Scholar 

  2. Ruan, Y., et al.: Reflective elastic metasurface for flexural wave based on surface impedance model. Int. J. Mech. Sci. 212, 106859 (2021)

    Article  Google Scholar 

  3. Assouar, B., Liang, B., Ying, Wu., Li, Y., Cheng, J.-C., Jing, Y.: Acoustic metasurfaces. Nat. Rev. Mater. 3(12), 460–472 (2018)

    Article  Google Scholar 

  4. Yu, N., et al.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–337 (2011)

    Article  Google Scholar 

  5. Ahn, B., et al.: Topology optimization of metasurfaces for anomalous reflection of longitudinal elastic waves. Comput. Methods Appl. Mech. Eng. 357 (2019)

  6. Zhu, H., et al.: Experimental study of vibration isolation in thin-walled structural assemblies with embedded total-internal-reflection metasurfaces. J. Sound Vib. 456 (2019)

  7. Ruan, Y., et al.: Retroreflection of flexural wave by using elastic metasurface. J. Appl. Phys. 128(4), 045116 (2020)

    Article  Google Scholar 

  8. Li, P., et al.: Stepped acoustic metasurface with simultaneous modulations of phase and amplitude. Appl. Phys. Express. 14(12) (2021)

  9. Rong, J., et al.: Multifunctional elastic metasurface design with topology optimization. Acta Mater. 185, 382–399 (2020)

    Article  Google Scholar 

  10. Lee, S.W., et al.: Broad-angle refractive transmodal elastic metasurface. Appl. Phys. Lett. 117(21) (2020)

  11. Jin, Y., et al.: Elastic metasurfaces for deep and robust subwavelength focusing and imaging. Phys. Rev. Appl. 15(2), 024005 (2021)

    Article  Google Scholar 

  12. Su, X., et al.: Elastic metasurfaces for splitting SV- and P-waves in elastic solids. J. Appl. Phys. 123(9), 091701 (2018)

    Article  Google Scholar 

  13. Zhao, S., et al.: Delivering sound energy along an arbitrary convex trajectory. Sci. Rep. 4(1) (2015)

  14. Hu, Y., et al.: Dielectric metasurface zone plate for the generation of focusing vortex beams. PhotoniX 2(1) (2021)

  15. Yaw, Z., et al.: Stiffness Tuning a functional-switchable active coding elastic metasurface. Int. J. Mech. Sci. 207(80), 106654 (2021)

    Article  Google Scholar 

  16. Lin, Z., et al.: Elastic metasurfaces for low-frequency flexural wavefront control. In: Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2020. 7(32nd Conference on Mechanical Vibration and Noise).

  17. Zhao, T., et al.: Reflected flexural wave manipulation based on ultra-thin elastic metasurface. In: 2020 15th SPAWDA (2021)

  18. Kim, M.S., et al.: Elastic wave energy entrapment for reflectionless metasurface. Phys. Rev. Appl. 12(5), 054036 (2020)

    Article  Google Scholar 

  19. Wang, W., et al.: Experimental realization of a pillared metasurface for flexural wave focusing. APL Mater. 9(5), 051125 (2021)

    Article  Google Scholar 

  20. Rong, J., et al.: Frequency-coded passive multifunctional elastic metasurfaces. Adv. Funct. Mater. 30(50), 2005285 (2020)

    Article  Google Scholar 

  21. Cao, L., et al.: Disordered elastic metasurfaces. Phys. Rev. Appl. 13(1), 014054 (2021)

    Article  Google Scholar 

  22. Zhang, J., et al.: Metasurface constituted by thin composite beams to steer flexural waves in thin plates. Int. J. Solids Struct. 162, 14–20 (2019)

    Article  Google Scholar 

  23. Lin, Z., et al.: Elastic metasurfaces for full wavefront control and low-frequency energy harvesting. J. Vib. Acoust. 143(6), 1–22 (2021)

    Article  Google Scholar 

  24. Xu, W., et al.: Anomalous refraction control of mode-converted elastic wave using compact notch-structured metasurface. Mater. Res. Express 6(6), 065802 (2019)

    Article  Google Scholar 

  25. Xu, W., et al.: Anomalous refraction manipulation of Lamb waves using single-groove metasurfaces. Phys. Scripta 94(10), 105807 (2019)

    Article  Google Scholar 

  26. Lin, Z., et al.: Modular elastic metasurfaces with mass oscillators for transmitted flexural wave manipulation. J. Phys. D Appl. Phys. 54(25) (2021)

  27. Xuan, C., et al.: Broadband tunable elastic metastructure based on one-dimensional phononic crystal. J. Appl. Phys. 129, 245102 (2021)

    Article  Google Scholar 

  28. Lin, Z., et al.: Modulation and research of ultra wideband acoustic vortex device. J. Shenyang Aerosp. Univ. 38(03), 7–13 (2021). ((In Chinese))

    Google Scholar 

  29. Lin, Z., et al.: Gradient folding metasurfaces with simultaneous phase and amplitude modulation. J. Mech. Sci. Technol. 35(12) 2021

  30. Zhang, W., Ma, Z., Hu, P.: Mechanical properties of a cellular vehicle body structure with negative Poisson’s ratio and enhanced strength. J. Reinf. Plast. Compos. 33(4), 342–349 (2013)

    Article  Google Scholar 

  31. Gong, X., Huang, J., Scarpa, F., et al.: Zero Poisson’s ratio cellular structure for two-dimensional morphing applications. Compos. Struct. 134(15), 384–392 (2015)

    Article  Google Scholar 

  32. Wei, K., et al.: Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit. J. Mech. Phys. Solids 86, 173–191 (2016)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Y.C., et al.: A new design of dual-constituent triangular lattice metamaterial with unbounded thermal expansion. Acta. Mech. Sin. 035(003), 507–517 (2019)

    Article  MathSciNet  Google Scholar 

  34. Huang, Y., Liu, S., Zhao, J.: Optimal design of two-dimensional band-gap materials for uni-directional wave propagation. Struct. Multidiscip. Optim. 48(3), 487–499 (2013)

    Article  MathSciNet  Google Scholar 

  35. Lv, S., Weikai, Xu., Bai, L., Qi, W., Wang, W.: Thermal tuning of band gap properties in planar stretch-dominated lattices with tailorable coefficient of thermal expansion. Appl. Phys. A 127, 425 (2021)

    Article  Google Scholar 

  36. Weikai, Xu., Lv, S., Liu, C., Qi, W., Wang, W.: Multifunctional design of triangular lattice metamaterials with customizable thermal expansion and tunable band gap properties. J. Appl. Phys. 130(8), 085106 (2021)

    Article  Google Scholar 

  37. Hang, Xu., Farag, A., Pasini, D.: Multilevel hierarchy in bi-material lattices with high specific stiffness and unbounded thermal expansion. Acta Mater. 134, 155–166 (2017)

    Article  Google Scholar 

  38. Chen, J., Wentao, Xu., Wei, Z., Wei, K., Yang, X.: Stiffness characteristics for a series of lightweight mechanical metamaterials with programmable thermal expansion. Int. J. Mech. Sci. 202–203, 106527 (2021)

    Article  Google Scholar 

  39. Chen, J., Wang, H., Wang, K., Wei, Z., Wentao, Xu., Wei, K.: Mechanical performances and coupling design for the mechanical metamaterials with tailorable thermal expansion. Mech. Mater. 165, 104176 (2022)

    Article  Google Scholar 

  40. Yuan, S., et al.: Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation. J. Sound Vib. 470, 115168 (2020)

    Article  Google Scholar 

  41. Su, X., et al.: Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps. J. Acoust. Soc. Am. 139(6), 3386–3394 (2016)

    Article  Google Scholar 

  42. Zhu, H., et al.: Anomalous refraction of acoustic guided waves in solids with geometrically tapered metasurfaces. Phys. Rev. Lett. 1171, 034302 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11502149, 11302135), Natural Science Foundation of Suqian City (No. K202124), Scientific Research Foundation of Suqian University. The financial contributions are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yang, Z., Wang, W. et al. Design of elastic wave metasurfaces based on lattice truss material. Arch Appl Mech 92, 2137–2149 (2022). https://doi.org/10.1007/s00419-022-02166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02166-6

Keywords

Navigation