Skip to main content
Log in

Vibroacoustic response from thin exponential functionally graded plates

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an analytical investigation of the sound radiation behavior of a thin exponential functionally graded material plate using the classical plate theory and Rayleigh Integral with the elemental radiator approach. The material properties of the plate material, like Poisson’s ratio, are assumed constant, while Young’s Modulus and density are assumed to vary according to the exponential law distribution of the constituent materials in the transverse direction. The functionally graded material is modeled using a physical neutral surface instead of a geometric middle surface. The parametric effects of exponential law index, elastic modulus ratio, different constituent materials, damping loss factor on the sound radiation from exponential functionally graded plate (E-FGM) are illustrated. Sound power level in A-weighted dBA (loudness) scale has been illustrated to compare the sound power level (noise levels) radiated from power law (P-FGM), sigmoid law (S-FGM), and an exponential law (E-FGM) FGM plates. A-weighted dBA has also been illustrated for different modulus ratios and different material constituent E-FGM plates. The principal aim of this research paper is to predict the level of sound power level or noise level radiated by the vibrating E-FGM plates. The further objective is its applications in industries to envision how beneficial it will be to use the E-FGM plate compared to P-FGM and S-FGM plate. It has been found that, for the considered plate, the modulus ratio significantly influences sound power level and sound radiation efficiency. Effects of modulus ratios on the sound power level showed frequency shift over stiffness control region in the low-frequency range (first mode for all modulus ratios). The different values of damping loss factors do not significantly influence radiation efficiency for the given material constituents of the functionally graded plate. However, the selection of material constituents influences the radiation efficiency peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chi, S.H., Chung, Y.L.: Mechanical behavior of functionally graded material plates under transverse load-part I: analysis. Int. J. Solids Struct. 43, 3657–3674 (2006). https://doi.org/10.1016/j.ijsolstr.2005.04.011

    Article  MATH  Google Scholar 

  2. Chi, S.H., Chung, Y.L.: Mechanical behavior of functionally graded material plates under transverse load—part II: numerical results. Int. J. Solids Struct. 43, 3675–3691 (2006). https://doi.org/10.1016/j.ijsolstr.2005.04.010

    Article  MATH  Google Scholar 

  3. Kumar, S., Ranjan, V., Jana, P.: Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method. Compos. Struct. 197, 39–53 (2018). https://doi.org/10.1016/j.compstruct.2018.04.085

    Article  Google Scholar 

  4. Birman, V., Byrd, L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60, 195–216 (2007). https://doi.org/10.1115/1.2777164

    Article  Google Scholar 

  5. Suresh, S., Mortensen, A.: Functionally graded metals and metal-ceramic composites: Part 2 Thermomechanical behaviour. Int. Mater. Rev. 42, 85–116 (1997). https://doi.org/10.1179/imr.1997.42.3.85

    Article  Google Scholar 

  6. Chi, S.-H., Chung, Y.-L.: Mechanical behavior of functionally graded material plates under transverse load—Part I: Analysis. Int. J. Solids Struct. 43, 3657–3674 (2006). https://doi.org/10.1016/j.ijsolstr.2005.04.011

    Article  MATH  Google Scholar 

  7. Kumar, S., Jana, P.: Application of dynamic stiffness method for accurate free vibration analysis of sigmoid and exponential functionally graded rectangular plates. Int. J. Mech. Sci. 163, 105105 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105105

    Article  Google Scholar 

  8. Ali, M.I., Azam, M.S., Ranjan, V., Bannerjee, J.R.: Free vibration of sigmoid functionally graded plate using dynamic stiffness method and Wittrick-Williams algorithm. J. Comput. Struct. 244, 106424 (2021). https://doi.org/10.1016/j.compstruc.2020.106424

    Article  Google Scholar 

  9. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 684, 663–684 (2000)

    Article  Google Scholar 

  10. Chandra, N., Raja, S., Gopal, K.V.N.: Vibro-acoustic response and sound transmission loss analysis of functionally graded plates. J. Sound Vib. 333, 5786–5802 (2014). https://doi.org/10.1016/j.jsv.2014.06.031

    Article  Google Scholar 

  11. Talha, M., Singh, B.N.: Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl. Math. Model. 34, 3991–4011 (2010). https://doi.org/10.1016/j.apm.2010.03.034

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhao, X., Lee, Y.Y., Liew, K.M.: Free Vibration Analysis of Functionally Graded Plates using the Element-Free Kp-Ritz method. J. Sound Vib. 319, 918–939 (2009). https://doi.org/10.1016/j.jsv.2008.06.025

    Article  Google Scholar 

  13. Chi, S.H., Chung, Y.L.: Mechanical behavior of functionally graded material plates under transverse load-Part II: Numerical results. Int. J. Solids Struct. 43, 3675–3691 (2006). https://doi.org/10.1016/j.ijsolstr.2005.04.010

    Article  MATH  Google Scholar 

  14. Jin, Z.H., Batra, R.C.: Stress intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock. J. Therm. Stress. 19, 317–339 (1996). https://doi.org/10.1080/01495739608946178

    Article  Google Scholar 

  15. Chi, S.H., Chung, Y.-L.: Cracking in sigmoid functionally graded coating. J Mech. 18, 41–53 (2002)

    Google Scholar 

  16. Wang, Y.Q., Zu, J.W.: Large-amplitude vibration of sigmoid functionally graded thin plates with porosities. Thin-Walled Struct. 119, 911–924 (2017). https://doi.org/10.1016/j.tws.2017.08.012

    Article  Google Scholar 

  17. Li, F., Chen, Y., Lv, M.: Thin-Walled Structures Vibro-acoustic characteristics of sigmoid functionally graded sandwich plates with temperature-dependent materials. Thin-Walled Struct. (2020). https://doi.org/10.1016/j.tws.2020.107310

    Article  Google Scholar 

  18. Wallace, C.E.: Radiation resistance of a rectangular panel. J. Acoust. Soc. Am. 51, 946 (1972). https://doi.org/10.1121/1.1912943

    Article  Google Scholar 

  19. Putra, A., Thompson, D.J.: Sound radiation from rectangular baffled and unbaffled plates. Appl. Acoust. 71, 1113–1125 (2010). https://doi.org/10.1016/j.apacoust.2010.06.009

    Article  Google Scholar 

  20. Chung, Y.-L., Chi, S.H.: The residual stress of functionally graded materials. J. Chin. Inst. Civ. Hydraul. Eng. 13, 1–9 (2001)

    Google Scholar 

  21. Chakraverty, S., Pradhan, K. K.: Vibration of Functionally Graded Beams and Plates (2016) https://doi.org/10.1016/C2015-0-00496-8

  22. Koizumi, M.: FGM activities in Japan. Compos. Part B Eng. 28, 1–4 (1997). https://doi.org/10.1016/s1359-8368(96)00016-9

    Article  Google Scholar 

  23. Swaminathan, K., Sangeetha, D.M.: Thermal analysis of FGM plates – a critical review of various modeling techniques and solution methods. Compos. Struct. 160, 43–60 (2017). https://doi.org/10.1016/j.compstruct.2016.10.047

    Article  Google Scholar 

  24. Yang, T., Zheng, W., Huang, Q., Li, S.: Sound radiation of functionally graded materials plates in thermal environment. Compos. Struct. 144, 165–176 (2016). https://doi.org/10.1016/j.compstruct.2016.02.065

    Article  Google Scholar 

  25. Chandra, N., Raja, S., Gopal, K.V.N.: A comprehensive analysis on the structural acoustic aspects of various functionally graded plates. Int. J. Appl. Mech. 7, 1550072 (2015). https://doi.org/10.1142/S1758825115500726

    Article  Google Scholar 

  26. Yang, T., Huang, Q., Li, S.: Three-dimensional elasticity solutions for sound radiation of functionally graded materials plates considering state space method. Shock Vib. 2016, 15 (2016). https://doi.org/10.1155/2016/1403856

    Article  Google Scholar 

  27. Hasheminejad, S.M., Alaei-Varnosfaderani, M.: Acoustic radiation and active control from a smart functionally graded submerged hollow cylinder. J. Vib. Control. 20, 2202–2220 (2013). https://doi.org/10.1177/1077546313483787

    Article  Google Scholar 

  28. Hasheminejad, S.M., Shabanimotlagh, M.: Sound insulation characteristics of functionally graded panels. Acta Acust. United with Acust. 94, 290–300 (2008). https://doi.org/10.3813/AAA.918032

    Article  Google Scholar 

  29. Li, J., Shi, Z., Liu, L., Song, C.: An efficient scaled boundary finite element method for transient vibro-acoustic analysis of plates and shells. Comput. Struct. 231, 106211 (2020). https://doi.org/10.1016/j.compstruc.2020.106211

    Article  Google Scholar 

  30. Van Vinh, P., Tounsi, A.: Thin-Walled Structures Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters. Thin-Walled Struct. 174, 109084 (2022). https://doi.org/10.1016/j.tws.2022.109084

    Article  Google Scholar 

  31. Rachid, A., Ouinas, D., Lousdad, A., Zaoui, F.Z., Achour, B., Gasmi, H., Butt, T.A., Tounsi, A.: Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs. Thin-Walled Struct. 172, 108783 (2022). https://doi.org/10.1016/j.tws.2021.108783

    Article  Google Scholar 

  32. Boulefrakh, S.R.M.L., Hebali, H., Chikh, A., Bousahla, A.A.: The effect of parameters of visco-pasternak foundation on the bending and vibration properties of a thick fg plate. Geomech. Eng. 18, 161–178 (2019). https://doi.org/10.12989/gae.2019.18.2.161

    Article  Google Scholar 

  33. Attia, S.M., Berrabah, A.T., Bousahla, A.A., Bourada, F., Tounsi, A.: Free vibration analysis of FG plates under thermal environment via a simple 4-unknown HSDT. Steel Compos. Struct. 41, 899–110 (2021). https://doi.org/10.12989/SCS.2021.41.6.899

    Article  Google Scholar 

  34. Bouafia, A.T.K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A.: Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model. Steel Compos. Struct. 41, 487–503 (2021). https://doi.org/10.12989/scs.2021.41.4.487

    Article  Google Scholar 

  35. Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U., Al-Zahrani, M.M.: Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment. Thin-Walled Struct. 170, 108549 (2022). https://doi.org/10.1016/j.tws.2021.108549

    Article  Google Scholar 

  36. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U., Al-Zahrani, M.M.: Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Compos. Struct. 269, 114030 (2021). https://doi.org/10.1016/J.COMPSTRUCT.2021.114030

    Article  Google Scholar 

  37. Merazka, M.M.A.-Z.B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H.: Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations. Steel Compos. Struct. 39, 631–643 (2021). https://doi.org/10.12989/scs.2021.39.5.631

    Article  Google Scholar 

  38. Kouider, M.H.D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A.: An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core. Steel Compos. Struct. 41, 167–191 (2021). https://doi.org/10.12989/scs.2021.41.2.167

    Article  Google Scholar 

  39. Al-Osta, A.T., Mohammed, A., Saidi, H., Tounsi, A., Al-Dulaijan, S.U., Al-Zahrani, M.M., Sharif, A.: Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model. Smart Struct. Sytems. 28, 499–513 (2021)

    Google Scholar 

  40. Hachemi, S.R.M.H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A.: Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position. Steel Compos. Struct. 39, 051–064 (2021). https://doi.org/10.12989/scs.2021.39.1.051

    Article  Google Scholar 

  41. Van Vinh, P., Tounsi, A.: The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01475-8

    Article  Google Scholar 

  42. Zerrouki, S.R.M.R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A.: Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam. Struct. Eng. Mech. 78, 117–124 (2021). https://doi.org/10.12989/sem.2021.78.2.117

    Article  Google Scholar 

  43. Bakoura, S.M., Bourada, A.F., Bousahla, A.A., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M.: Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method. Comput. Concr. 27, 73–83 (2021). https://doi.org/10.12989/CAC.2021.27.1.073

    Article  Google Scholar 

  44. Guellil, S.R.M.M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M.: Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation. Steel Compos. Struct. 38, 1–15 (2021). https://doi.org/10.12989/scs.2021.38.1.001

    Article  Google Scholar 

  45. Bekkaye, M.M.A.-Z., Lamine, T.H., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A.: Porosity-dependent mechanical behaviors of fg plate using refined trigonometric shear deformation theory. Comput. Concr. 26, 439–450 (2020). https://doi.org/10.12989/CAC.2020.26.5.439

    Article  Google Scholar 

  46. Bendenia, A.T., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E.A.A., Mahmoud, S.R.: Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Comput. Concr. 26, 213–226 (2020). https://doi.org/10.12989/CAC.2020.26.3.213

    Article  Google Scholar 

  47. Menasria, S.R.M.A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A.: A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions. Steel Compos. Struct. (2020). https://doi.org/10.12989/scs.2020.36.3.355

    Article  Google Scholar 

  48. Huang, X., Hao, H., Oslub, K., Habibi, M., Tounsi, A.: Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01399-3

    Article  Google Scholar 

  49. Al-Furjan, M.S.H., Hatami, A., Habibi, M., Shan, L., Tounsi, A.: On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method. Compos. Struct. 257, 113150 (2021). https://doi.org/10.1016/j.compstruct.2020.113150

    Article  Google Scholar 

  50. Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M., Tounsi, A.: Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory. Eng. Struct. 228, 111496 (2021). https://doi.org/10.1016/j.engstruct.2020.111496

    Article  Google Scholar 

  51. Alshorbagy, A.E., Alieldin, S.S., Shaat, M., Mahmoud, F.F.: Finite element analysis of the deformation of functionally graded plates under thermomechanical loads. Math. Probl. Eng. 2013, 569781 (2013). https://doi.org/10.1155/2013/569781

    Article  MathSciNet  MATH  Google Scholar 

  52. Qiao, Y., Huang, Q.: The effect of boundary conditions on sound loudness radiated from rectangular plates. Arch. Appl. Mech. 77, 21–34 (2007). https://doi.org/10.1007/s00419-006-0075-z

    Article  MATH  Google Scholar 

  53. Qiao, Y., Huang, Q.: Fluctuation strength of modulated sound radiated from rectangular plates with mixed boundary conditions. Arch. Appl. Mech. 77, 729–743 (2007). https://doi.org/10.1007/s00419-007-0124-2

    Article  MATH  Google Scholar 

  54. Putra, A., Shyafina, N., Thompson, D., Muhammad, N., Jailani, M., Nor, M., Nuawi, Z.: Modelling sound radiation from a baffled vibrating plate for ddifferent boundary conditions using an elementary source technique, Inter. Noise. pp. 1–8 (2014)

  55. Geng, Q., Li, H., Li, Y.: Dynamic and acoustic response of a clamped rectangular plate in thermal environments: experiment and numerical simulation. J. Acoust. Soc. Am. 135, 2674–2682 (2014). https://doi.org/10.1121/1.4870483

    Article  Google Scholar 

  56. Geng, Q., Li, Y.: Solutions of dynamic and acoustic responses of a clamped rectangular plate in thermal environments. J. Vib. Control. 22, 1593–1603 (2016). https://doi.org/10.1177/1077546314543730

    Article  MathSciNet  Google Scholar 

  57. Tao, J., Ge, H., Qiu, X.: A new rule of vibration sampling for predicting acoustical radiation from rectangular plates. Appl. Acoust. 67, 756–770 (2006). https://doi.org/10.1016/j.apacoust.2005.12.005

    Article  Google Scholar 

  58. Kirkup, S.M.: Computational solution of the acoustic field surrounding a baffled panel by the Rayleigh integral method. Appl. Math. Model. 18, 403–407 (1994). https://doi.org/10.1016/0307-904X(94)90227-5

    Article  MathSciNet  MATH  Google Scholar 

  59. Abom, M., Boden, H.: A method for estimating the sound power radiated from plates with prescribed excitation in the multi-mode region. Appl. Acoust. 22, 203–212 (1987). https://doi.org/10.1016/0003-682X(87)90037-5

    Article  Google Scholar 

  60. Feit, D.: Sound radiation from orthotropic plates. J. Acoust. Soc. Am. 47, 388 (1970). https://doi.org/10.1121/1.1911514

    Article  Google Scholar 

  61. Reynders, E., Van Hoorickx, C., Dijckmans, A.: Sound transmission through finite rib-stiffened and orthotropic plates. Acta Acust. United with Acust. 102, 999–1010 (2016). https://doi.org/10.3813/AAA.919015

    Article  Google Scholar 

  62. Zhou, K., Su, J., Hua, H.: Closed form solutions for vibration and sound radiation of orthotropic plates under thermal environment. J. Sound Vib. 18, 1850098 (2018). https://doi.org/10.1142/S0219455418500980

    Article  MathSciNet  Google Scholar 

  63. Kam, T.Y., Lee, B.Y.: Sound radiation of elastically restrained stiffened orthotropic plates. J. Acoust. Soc. Am. 131, 3232 (2012). https://doi.org/10.1121/1.4708051

    Article  Google Scholar 

  64. Cao, X., Hua, H., Zhang, Z.: Sound radiation from shear deformable stiffened laminated plates. J. Sound Vib. 330, 4047–4063 (2011). https://doi.org/10.1016/j.jsv.2011.04.016

    Article  Google Scholar 

  65. Cao, X., Hua, H.: Sound radiation from shear deformable stiffened laminated plates with multiple compliant layers. ASME. J. Vib. Acoust. 134, 51001 (2012). https://doi.org/10.1115/1.4006233

    Article  Google Scholar 

  66. Hao, W.F., Wang, S., Kam, T.Y.: Sound radiation of laminated composite plates partially supported by elastic restraints, In 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf. vol. 28, p. 3571 (2007) https://doi.org/10.2514/6.2007-3571

  67. Li, X., Yu, K., Zhao, R.: Vibro-acoustic response of a clamped rectangular sandwich panel in thermal environment. Appl. Acoust. 132, 82–96 (2018). https://doi.org/10.1016/j.apacoust.2017.11.010

    Article  Google Scholar 

  68. Arunkumar, M.P., Jagadeesh, M.: Sound radiation and transmission loss characteristics of a honeycomb sandwich panel with composite facings: effect of inherent material damping. J. Sound Vib. 383, 221–232 (2018). https://doi.org/10.1016/j.jsv.2016.07.028

    Article  Google Scholar 

  69. Sorrenti, M., Di Sciuva, M., Tessler, A.: A robust four-node quadrilateral element for laminated composite and sandwich plates based on Refined Zigzag Theory. Comput. Struct. 242, 106369 (2021). https://doi.org/10.1016/j.compstruc.2020.106369

    Article  Google Scholar 

  70. Merdaci, S., Tounsi, A., Houari, M.S.A., Mechab, I., Hebali, H., Benyoucef, S.: Two new refined shear displacement models for functionally graded sandwich plates. Arch. Appl. Mech. 81, 1507–1522 (2011). https://doi.org/10.1007/s00419-010-0497-5

    Article  MATH  Google Scholar 

  71. Chandra, N., Gopal, K.V.N., Raja, S.: Vibro-acoustic response of sandwich plates with functionally graded core. Acta Mech. (2015). https://doi.org/10.1007/s00707-015-1513-1

    Article  MATH  Google Scholar 

  72. Hasheminejad, S.M., Shabanimotlagh, M.: Sound iinsulation characteristics of functionally graded panels. Acta Acust. United with Acust. 94, 290–300 (2008). https://doi.org/10.3813/AAA.918032

    Article  Google Scholar 

  73. Isaac, C.W., Wrona, S., Pawelczyk, M., Roozen, N.B.: Numerical investigation of the vibro-acoustic response of functionally graded lightweight square panel at low and mid-frequency regions. Compos. Struct. 259, 113460 (2021). https://doi.org/10.1016/j.compstruct.2020.113460

    Article  Google Scholar 

  74. Singh, P.P., Azam, M.S., Ranjan, V.: Vibration analysis of a thin functionally graded plate having an out of plane material inhomogeneity resting on Winkler-Pasternak foundation under different combinations of boundary conditions. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233, 2636–2662 (2019). https://doi.org/10.1177/0954406218796040

    Article  Google Scholar 

  75. Chauhan, M., Dwivedi, S., Jha, R., Ranjan, V., Sathujoda, P.: Sigmoid functionally graded plates embedded on Winkler-Pasternak foundation: Free vibration analysis by dynamic stiffness method. Compos. Struct. 288, 115400 (2022). https://doi.org/10.1016/J.COMPSTRUCT.2022.115400

    Article  Google Scholar 

  76. Belegundu, A.D., Salagame, R.R., Koopmann, G.H.: SA E Technical paper series a general optimization approach for minimizing acoustic power using finite elements (2018).

  77. Chen, K., Koopmann, G.H.: Active control of low-frequency sound radiation from vibrating panel using planar sound sources. ASME J. Vib. Acoust. 124, 2–9 (2002). https://doi.org/10.1115/1.1420197

    Article  Google Scholar 

  78. Yoo, J.W.: Modelling of sound radiation from a beam-stiffened plate and a clamped rectangular plate based on a modal method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 2900–2914 (2014). https://doi.org/10.1177/0954406214524744

    Article  Google Scholar 

  79. Li, J.Q., Chen, J., Yang, C., Dong, G.M.: A sound field visualization system based on the wave superposition algorithm. Proc. Inst. Mech. Eng. Part. C. J. Mech. Eng. Sci. 222, 1403–1412 (2008). https://doi.org/10.1243/09544062JMES702

    Article  Google Scholar 

  80. De Rosa, S., Capobianco, M., Nappo, G., Pagnozzi, G.: Models and comparisons for the evaluation of the sound transmission loss of panels. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 3343–3355 (2014). https://doi.org/10.1177/0954406214530597

    Article  Google Scholar 

  81. Arenas, J.P.: Sound radiation efficiency of a baffled rectangular plate excited by harmonic point forces using its surface resistance matrix. J. Acoust. Vib. 7, 2002 (2002)

    Google Scholar 

  82. Arenas, J.P.: Numerical computation of the sound radiation from a planar baffled vibrating surface. J. Comput. Acoust. 16, 321–341 (2008). https://doi.org/10.1142/S0218396X08003671

    Article  MathSciNet  MATH  Google Scholar 

  83. Arenas, J.P.: Matrix method for estimating the sound power radiated from a vibrating plate for noise control engineering applications. Lat. Am. Appl. Res. 39, 345–352 (2009)

    Google Scholar 

  84. Mao, Q., Pietrzko, S.: Control of noise and structural vibration: a MATLAB®-based approach, Springer, London Heidelberg New York Dordrecht, (2013) https://doi.org/10.1007/978-1-4471-5091-6

  85. Nichols, R.H., Lee, C.P., Wang, T.G.: Sound acoustics radiation from the vibration of functionally graded plates. J. Acoust. Soc. Am. 83, 62459–62461 (1988). https://doi.org/10.1121/1.398902

    Article  Google Scholar 

  86. Naghshineh, K., Koopmann, G., Belegundu, A.: Material Tailoring of structures to achieve a minimum radiation condition. J. Acoust. Soc. Am. 92, 841–855 (1992). https://doi.org/10.1121/1.403955

    Article  Google Scholar 

  87. Putra, A.: Sound radiation from perforated plates. J. Sound Vib. 329, 4227–4250 (2007)

    Article  Google Scholar 

  88. Huang, C., Nutt, S.: An analytical study of sound transmission through unbounded panels of functionally gradedmaterials. J. Sound Vib. 330, 1153–1165 (2011). https://doi.org/10.1016/j.jsv.2010.09.020

    Article  Google Scholar 

  89. Zhang, D.G., Zhou, Y.H.: A theoretical analysis of FGM thin plates based on physical neutral surface. Comput. Mater. Sci. 44, 716–720 (2008). https://doi.org/10.1016/j.commatsci.2008.05.016

    Article  Google Scholar 

  90. Kennsssssedy, D., Cheng, R.K.H., Wei, S., Arevalo, F.J.A.: Equivalent layered models for functionally graded plates. Comput. Struct. (2015). https://doi.org/10.1016/j.compstruc.2015.09.009

    Article  Google Scholar 

  91. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods. Eng. 47, 663–684 (2000). https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3%3c663::AID-NME787%3e3.0.CO;2-8

    Article  MATH  Google Scholar 

  92. Abrate, S.: Functionally graded plates behave like homogeneous plates. Compos. Part B Eng. 39, 151–158 (2008). https://doi.org/10.1016/j.compositesb.2007.02.026

    Article  Google Scholar 

  93. Singh, B.N., Ranjan, V., Hota, R.N.: Vibroacoustic response of mode localized thin functionally graded plates using physical neutral surface. Compos. Struct. 287, 115301 (2022). https://doi.org/10.1016/J.COMPSTRUCT.2022.115301

    Article  Google Scholar 

  94. Zhang, Y.B., Bi, C.X., Chen, X.Z., Chen, J.: Computation of acoustic radiation from vibrating structures in motion. Appl. Acoust. 69, 1154–1160 (2008). https://doi.org/10.1016/j.apacoust.2007.11.007

    Article  Google Scholar 

  95. Yin, S., Yu, T., Liu, P.: Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface. Recent Adv. Comput. Mech. 5, 634584 (2013). https://doi.org/10.1155/2013/634584

    Article  Google Scholar 

  96. Li, W., Geng, Q., Li, Y.M.: Theoretical analyses of vibration and sound radiation responses of heated symmetric laminated plates in pre- and post-buckling ranges. Appl. Mech. Mater. 775, 23–27 (2015). https://doi.org/10.4028/www.scientific.net/AMM.775.23

    Article  Google Scholar 

  97. Morimoto, T., Tanigawa, Y., Kawamura, R.: Thermal buckling of functionally graded rectangular plates subjected to partial heating. Int. J. Mech. Sci. 48, 926–937 (2006). https://doi.org/10.1016/j.ijmecsci.2006.03.015

    Article  MATH  Google Scholar 

  98. Ruan, M., Wang, Z.M.: Transverse vibrations of moving skew plates made of functionally graded material. JVC/J. Vib Control. 22, 3504–3517 (2016). https://doi.org/10.1177/1077546314563967

    Article  MathSciNet  Google Scholar 

  99. Geng, Q., Li, H., Li, Y.: Dynamic and acoustic response of a clamped rectangular zplate in thermal environments: experiment and numerical simulation. J. Acoust. Soc. Am. 135, 2674–2682 (2014). https://doi.org/10.1121/1.4870483

    Article  Google Scholar 

  100. Allahverdizadeh, A., Oftadeh, R., Mahjoob, M.J., Soleimani, A., Tavassoli, H.: Analyzing the effects of jump phenomenon in nonlinear vibration of thin circular functionally graded plates. Arch. Appl. Mech. 82, 907–918 (2012). https://doi.org/10.1007/s00419-011-0600-6

    Article  MATH  Google Scholar 

  101. Liu, Y., Li, Y.: Vibration and acoustic response of rectangular sandwich plate under thermal environment. Shock Vib. 20, 1011–1030 (2013). https://doi.org/10.3233/SAV-130801

    Article  Google Scholar 

Download references

Funding

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Hota.

Ethics declarations

Conflict of interest

The manuscript entitled “Vibroacoustic response from thin exponential functionally graded plates” Please check the following as appropriate: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B.N., Ranjan, V. & Hota, R.N. Vibroacoustic response from thin exponential functionally graded plates. Arch Appl Mech 92, 2095–2118 (2022). https://doi.org/10.1007/s00419-022-02163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02163-9

Keywords

Navigation