Skip to main content

Advertisement

Log in

Vibration control and energy accumulation of one-dimensional acoustic black hole structure with damping layer

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the view of the potential for vibration control and energy harvesting of the acoustic black hole (ABH), the transfer matrix scheme combined with the finite element method is utilized to establish the governing equation of a one-dimensional ABH beams attached with a damping layer. According to the continuous condition of generalized forces and displacements between the two adjacent uniform sections, the transfer relationship is derived. The energy ratio is defined as the ratio of the edge part to the entire wedge, which illustrates the energy concentration effect. A damping layer is introduced for controlling the fluctuation. Numerical simulation is presented to illustrate the effectiveness of presented control method. The influences of physical parameters such as excitation frequency, power exponent and thickness of the damping layer on energy concentration are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pekeris, C.L.: Theory of propagation of sound in a half-space of variable sound velocity under conditions of formation of a shadow zone. J. Acoust. Soc. Am. 18, 295–315 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  2. Krylov, V.V.: Conditions for validity of the geometrical-acoustics approximation in application to waves in an acute-angle solid wedge. Soviet Phys. Acoust. 35(2), 176–180 (1989)

    Google Scholar 

  3. Krylov, V.V., Tilman, F.J.B.S.: Acoustic ‘black holes’ for flexural waves as effective vibration dampers. J. Sound Vib. 274(3–5), 605–619 (2004)

    Article  Google Scholar 

  4. Krylov, V.V., Winward, R.E.T.B.: Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. J. Sound Vib. 300(1), 43–49 (2007)

    Article  Google Scholar 

  5. Kralovic, V., Bowyer, E. P., Krylov, V. V., et al.: Experimental study on damping of flexural waves in rectangular plates by means of one-dimensional acoustic ‘black holes’ 14th International Acoustic Conference. (2009)

  6. Denis, V., Pelat, A., Gautier, F., et al.: Modal overlap factor of a beam with an acoustic black hole termination. J. Sound Vib. 333(12), 2475–2488 (2014)

    Article  Google Scholar 

  7. Bowyer, E.P., Krylov, V.V.: Sound radiation of rectangular plates containing tapered indentations of power-law profile. J. Acoust. Soc. Am. 132(3), 2041 (2012)

    Google Scholar 

  8. Zhao, L., Conlon, S.C., Semperlotti, F.: Broadband energy harvesting using acoustic black hole structural tailoring. Smart Mater. Struct. 23(6), 5021 (2014)

    Article  Google Scholar 

  9. Zhao, L., Conlon, S.C., Semperlotti, F.: An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes. Smart Mater. Struct. 24(6), 065039 (2015)

    Article  Google Scholar 

  10. Bowyer, E.P., Nash, P., Krylov, V.V.: Damping of flexural vibrations in glass fibre composite plates and honeycomb sandwich panels containing indentations of power-law profile. J. Acoust. Soc. Am. 132(3), 2041 (2012)

    Google Scholar 

  11. O’Boy, D.J., Krylov, V.V., Kralovic, V.: Damping of flexural vibrations in rectangular plates using the acoustic black hole effect. J. Sound Vib. 329(22), 4672–4688 (2010)

    Article  Google Scholar 

  12. O’Boy, D.J., Krylov, V.V.: Damping of flexural vibrations in circular plates with tapered central holes. J. Sound Vib. 330(10), 2220–2236 (2011)

    Article  Google Scholar 

  13. Lomonosov, A.M., Yan, S.L., Han, B., et al.: Orbital-type trapping of elastic Lamb waves. Ultrasonics 64, 58–61 (2016)

    Article  Google Scholar 

  14. Huang, W., Ji, H.L., Qiu, J., et al.: Wave energy focalization in a plate with imperfect two-dimensional acoustic black hole indentation. J. Vib. Acoust. 138(6), 1004 (2016)

    Article  Google Scholar 

  15. Torrent, D., Sánchez-Dehesa, J.: Acoustic metamaterials for new two-dimensional sonic devices. New J. Phys. 9(9), 323 (2007)

    Article  Google Scholar 

  16. Zhang, S., Yin, L., Fang, N.: Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102(19), 4301 (2009)

    Article  Google Scholar 

  17. Dubois, M., Farhat, M., Bossy, E., et al.: Flat lens for pulse focusing of elastic waves in thin plates. Appl. Phys. Lett. 103(7), 1915 (2013)

    Article  Google Scholar 

  18. Torrent, D., Pennec, Y., Djafari-Rouhani, B.: Omnidirectional refractive devices for flexural waves based on graded phononic crystals. J. Appl. Phys. 116(22), 4902-1-4902–8 (2014)

    Article  Google Scholar 

  19. Climente, A., Torrent, D., Sánchez-Dehesa, J.: Gradient index lenses for flexural waves based on thickness variations. Appl. Phys. Lett. 105(6), 4101-1-4101–4 (2014)

    Article  Google Scholar 

  20. Krylov, V.V.: Surface properties of solids and surface acoustic waves: Application to chemical sensors and layer characterization. Appl. Phys. A 61(3), 229–236 (1995)

    Article  Google Scholar 

  21. Krylov, V.V.: New type of vibration dampers utilising the effect of acoustic ‘black holes.’ Acta Acust. Acust. 90(5), 830–837 (2004)

    Google Scholar 

  22. Georgiev, V.B., Cuenca, J., Gautier, F., et al.: Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect. J. Sound Vib. 330(11), 2497–2508 (2011)

    Article  Google Scholar 

  23. Tang, L., Cheng, L.: Loss of acoustic black hole effect in a structure of finite size. Appl. Phys. Lett. 109(1), 4102 (2016)

    Article  Google Scholar 

  24. Tang, L., Cheng, L., Ji, H.L., et al.: Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model. J. Sound Vib. 374, 172–184 (2016)

    Article  Google Scholar 

  25. Li, X., Ding, Q.: Analysis on vibration energy concentration of the one-dimensional wedge-shaped acoustic black hole structure. J. Intell. Mater. Syst. Struct. 29(10), 2137–2148 (2018)

    Article  Google Scholar 

  26. Li, X., Ding, Q.: Sound radiation of a beam with a wedge-shaped edge embedding acoustic black hole feature. J. Sound Vib. 439, 287–299 (2019)

    Article  Google Scholar 

  27. He, M., Ding, Q.: Data-driven optimization of the periodic beam with multiple acoustic black holes. J. Sound Vib. 493, 115816 (2021)

    Article  Google Scholar 

  28. Lyu, X., Ding, Q., Yang, T.: Merging phononic crystals and acoustic black holes. Appl. Math. Mech. English Ed. 41(5), 279–288 (2020)

    Article  MathSciNet  Google Scholar 

  29. Zeng, P., Zheng, L., Deng, J., et al.: Flexural wave concentration in tapered cylindrical beams and wedge-like rectangular beams with power-law thickness. J. Sound Vib. 452, 82–96 (2019)

    Article  Google Scholar 

  30. Deng, J., Guasch, O., Zheng, L., et al.: Semi-analytical model of an acoustic black hole piezoelectric bimorph cantilever for energy harvesting. J. Sound Vib. 494, 115790 (2021)

    Article  Google Scholar 

  31. Deng, J., Guasch, O., Maxit, L., et al.: A metamaterial consisting of an acoustic black hole plate with local resonators for broadband vibration reduction. J. Sound Vib. 526, 116803 (2022)

    Article  Google Scholar 

  32. Park, S., Lee, J.Y., Jeon, W.: Vibration damping of plates using waveguide absorbers based on spiral acoustic black holes. J. Sound Vib. 521, 116685 (2022)

    Article  Google Scholar 

  33. Li, H., Sécail-Géraud, M., Pelat, A., et al.: Experimental evidence of energy transfer and vibration mitigation in a vibro-impact acoustic black hole. Appl. Acoust. 182, 108168 (2021)

    Article  Google Scholar 

  34. Li, H., Doaré, O., Touzé, C., et al.: Energy harvesting efficiency of unimorph piezoelectric acoustic black hole cantilever shunted by resistive and inductive circuits. Int. J. Solids Struct. 238, 111409 (2022)

    Article  Google Scholar 

  35. Deng, J., Guasch, O., Maxit, L., et al.: Annular acoustic black holes to reduce sound radiation from cylindrical shells. Mech. Syst. Signal Process. 158, 107722 (2021)

    Article  Google Scholar 

  36. Chen, G., Nie, W.: Dynamic characteristics of a WPC-comparison of transfer matrix method and FE method. J. Mar. Sci. Appl. 2(2), 25–30 (2003)

    Article  Google Scholar 

  37. Ece, M.C., Aydogdu, M., Taskin, V.: Vibration of a variable cross-section beam. Mech. Res. Commun. 34(1), 78–84 (2007)

    Article  MATH  Google Scholar 

  38. Sun, Q.J.: Vibration and sound radiation of non-uniform beams. J. Sound Vib. 185(5), 827–843 (1995)

    Article  MATH  Google Scholar 

  39. Uhrig, R.: The transfer matrix method seen as on method of structural analysis among others. J. Sound Vib. 4(2), 136–148 (1966)

    Article  MATH  Google Scholar 

  40. Verdiere, K., Panneton, R., Elkoun, S.: Comparison between parallel transfer matrix method and admittance sum method. J. Acoust. Soc. Am. 136(2), 90–95 (2014)

    Article  Google Scholar 

  41. Zhang, Y., Tu, Z., Lu, T., et al.: A simplified transfer matrix of multi-layer piezoelectric stack. J. Intell. Mater. Syst. Struct. 28(5), 595–603 (2017)

    Article  Google Scholar 

  42. Chong, B.M.P., Tan, L.B., Lim, K.M., et al.: A review on acoustic black-holes (ABH) and the experimental and numerical study of ABH-featured 3D printed beams. Int. J. Appl. Mech. 9(6), 47 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11902001, 11875126). China Postdoctoral Science Foundation (Grant No. 2018M641643), Anhui Provincial Natural Science Foundation (Grant No. 1908085QA13) and the Middle-aged Top-notch Talent and Innovative Team Support Program of Anhui Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, Y., Gu, T. & Tang, Y. Vibration control and energy accumulation of one-dimensional acoustic black hole structure with damping layer. Arch Appl Mech 92, 1777–1788 (2022). https://doi.org/10.1007/s00419-022-02145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02145-x

Keywords

Navigation