Skip to main content

Advertisement

Log in

Effect of wing flexibility on the aerodynamic performance of a robotic dragonfly

  • Technical Notes
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

To investigate the effect of wing covering and the wing rib over the aerodynamic efficiency, a micro aerial vehicle (MAV) like dragonfly with a two paired wing modell is developed and tested in a wind-tunnel with various composite wings. Four different composite forms of wings, namely R-Rigid, SR-Semi Rigid, F-Flexible and HF-Highly Flexible are considered. Results demonstrated that the leading edge rib has an important role in the selection of wing than cord rib. Low aerodynamic performance is observed with R and HF wings, however, SR wing with leading edge rib of 0.8 mm and wing skin thickness of 127 μm exhibits greater aerodynamic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ellington, C.P., van den Berg, C., Willmott, A.P.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996)

    Article  Google Scholar 

  2. Van den Berg, C., Ellington, C.P.: The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth. Philos. Trans. R. Soc. B 352, 329–340 (1997)

    Article  Google Scholar 

  3. Chen, M.-L., Miao, W.-B., Zhong, C.-S.: Numerical simulation of insect flight. Appl. Math. Mech. 27, 601–606 (2006)

    Article  Google Scholar 

  4. Ellington, C.: P, The novel aerodynamics of insect flight: applications to micro air vehicles. J. Exp. Biol. 202, 3439–3448 (1999)

    Article  Google Scholar 

  5. Dickinson, M.H., Lehman, F.O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960 (1999)

    Article  Google Scholar 

  6. Sane, S.P., Dickinson, M.H.: The control of flight force a flapping wing: lift and drag production. J. Exp. Biol. 204, 2607–2626 (2001)

    Article  Google Scholar 

  7. Young, S.M., Walker, R.J., Bomphrey, G.K.: Taylor, Thomas ALR, Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325, 1549–1552 (2009)

    Article  Google Scholar 

  8. Walker, J., Thomas, A.L.R., Taylor, G.K.: Deformable wing kinematics in free-flying hoverflies. J. R. Soc. Interface 7(42), 131–142 (2010)

    Article  Google Scholar 

  9. Du, G., Sun, M.: Effects of wing deformation on aerodynamic forces in hovering hoverflies. J. Exp. Biol. 213, 2273–2283 (2010)

    Article  Google Scholar 

  10. Combes, S.A., Daniel, T.L.: Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J. Exp. Biol. 206, 2989–2997 (2003)

    Article  Google Scholar 

  11. Wootton, R.J., Herbert, R.C., Young, P.G., Evans, K.E.: Approaches to the structural modelling of insect wings. Philos. Trans. R. Soc. 358, 1577–1587 (2003)

    Article  Google Scholar 

  12. Heathcote, S., Wang, Z., Gursul, I.: Effect of spanwise flexibility on flapping wing propulsion. J. Fluids Struct. 24, 183–199 (2008)

  13. Hu, H., Kumar, A.G., Abate, G.: An experimental investigation on the aerodynamic performances of flexible membrane wings in flapping flight. Aerosp. Sci. Technol. 14, 575–586 (2010)

    Article  Google Scholar 

  14. Zheng, Y., Wu, Y., Tang, H.: Force measurements of flexible tandem wings in hovering and forward flights. Bioinspir. Biomim. 10(1), 016021 (2015)

    Article  Google Scholar 

  15. Li, Q., Zheng, M., Pan, T., Su, G.: Experimental and numerical investigation on dragonfly wing and body motion during voluntary take-off. Sci. Rep. 8(1), 1011 (2018)

    Article  Google Scholar 

  16. Reynolds, A.-A.: J-S Han and J-H Han, Aerodynamic performance of flexible flapping wings deformed by slack angle. Bioinspir. Biomim. 15, 066005 (2020)

    Article  Google Scholar 

  17. Swain, P.K., Dora, S.P.: Experimental and numerical investigation of wing–wing interaction and its effect on aerodynamic force of a robotic dragonfly during hovering and forward flight. Arch. Appl. Mech. 91, 2039–2052 (2021)

    Article  Google Scholar 

  18. Sun, X., Gong, X., Huang, D.: A review on studies of the aerodynamics of different types of manoeuvres in dragonflies. Arch. Appl. Mech. 87, 521–554 (2017)

    Article  Google Scholar 

  19. Usherwood, J.R., Lehmann, F.-O.: Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. J. R. Soc. Interface 5, 1303–1307 (2008)

    Article  Google Scholar 

  20. Heathcote, S., Gursul, I.: Flexible flapping aerofoil propulsion at low Reynolds numbers. AIAA J. 45, 1066–1079 (2007)

    Article  Google Scholar 

  21. Birch, J.M., Dickinson, M.H.: Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412, 729–733 (2001)

    Article  Google Scholar 

  22. Heathcote, S., Wang, Z., Gursul, I.: Effect of spanwise flexibility on flapping wing propulsion. J. Fluids Struct. 24(2), 183–199 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siva Prasad Dora.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, P.K., Dora, S.P., Batulla, S.M. et al. Effect of wing flexibility on the aerodynamic performance of a robotic dragonfly. Arch Appl Mech 92, 1149–1156 (2022). https://doi.org/10.1007/s00419-022-02138-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02138-w

Keywords

Navigation