Skip to main content
Log in

Mathematical modeling of nanomachining with bimodal dynamic scanning thermal microscope probe

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The aim of current study is to present and study the bimodal dynamic Scanning Thermal Microscope (SThM) for nanomachining. Bimodal SThM is the same as conventional SThM where the base is excited simultaneously at a frequency close to the 1st and 2nd resonance frequency of probe. Bimodal excitation makes two separated channels for monitoring sample data for different purposes. Thus, a mathematical model for bimodal SThM is provided. The nonlinear coupled equations of motion are solved analytically. The presented model is compared with the literature and the behavior of bimodal SThM is compared with conventional type. It is shown that the shifted resonance frequencies are independent of the type of excitation and bimodal excitation increases amplitudes at all shifted resonance frequencies. By decreasing ratio of base excitation amplitudes, the amplitude in the 2nd base excitation frequency and all shifted resonance frequencies increase. Bimodal technique amplifies the amplitudes at the 2nd shifted resonance frequency, this data can improve resolution in thermal images. Then, the effects of tip radius on the final surface are simulated. It is shown that the nanomachining depth increases significantly for bimodal SThM and nanomachined surface roughness is increased. It is declared increase in temperature gradient does not necessarily improve the roughness and the final surface always depends on the interactions of three parameters: the tip radius, the total shape of the vibrational response and the location of the peaks with large amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Fast Fourier Transform (FFT).

References

  1. Lui, T., Yang, B.: Thermography techniques for integrated circuits and semiconductor devices. Sens. Rev. 27, 298–309 (2007). https://doi.org/10.1108/02602280710821434

    Article  Google Scholar 

  2. Juszczyk, J., Kaźmierczak-Bałata, A., Firek, P., Bodzenta, J.: Measuring thermal conductivity of thin films by Scanning Thermal Microscopy combined with thermal spreading resistance analysis. Ultramicroscopy 175, 81–86 (2017). https://doi.org/10.1016/j.ultramic.2017.01.012

    Article  Google Scholar 

  3. Janus, P., Sierakowski, A., Grabiec, P., Rudek, M., Majstrzyk, W., Gotszalk, T.: Micromachined active test structure for scanning thermal microscopy probes characterization. Microelectron. Eng. 174, 70–73 (2017). https://doi.org/10.1016/j.mee.2017.02.010

    Article  Google Scholar 

  4. Nguyen, T.P., Lemaire, E., Euphrasie, S., Thiery, L., Teyssieux, D., Briand, D., Vairac, P.: Microfabricated high temperature sensing platform dedicated to Scanning Thermal Microscopy (SThM). Sensors Actuators A Phys. 275, 109–118 (2018). https://doi.org/10.1016/j.sna.2018.04.011

    Article  Google Scholar 

  5. Wielgoszewski, G., Gotszalk, T.: Chapter Four-Scanning Thermal Microscopy (SThM): how to map temperature and thermal properties at the nanoscale. Adv. Imaging Electron. Phys. 190, 177–221 (2015). https://doi.org/10.1016/bs.aiep.2015.03.011

    Article  Google Scholar 

  6. Timofeeva, M., Bolshakov, A., Tovee, P.D., Zeze, D.A., Dubrovskii, V.G., Kolosov, O.V.: Scanning thermal microscopy with heat conductive nanowire probes. Ultramicroscopy 162, 42–51 (2016). https://doi.org/10.1016/j.ultramic.2015.12.006

    Article  Google Scholar 

  7. Massoud, A.M., Bluet, J.M., Lacaten, V., Haras, M., Robillard, J.F., Chapuis, P.O.: Native-oxide limited cross-plane thermal transport in suspended silicon membranes revealed by scanning thermal microscopy. Appl. Phys. Lett. 111, 063106 (2017). https://doi.org/10.1063/1.4997914

    Article  Google Scholar 

  8. Nakanishi, K., Kogure, A., Kuwana, R., Takamatsu, H., Ito, K.: Development of a novel scanning thermal microscopy (SThM) method to measure the thermal conductivity of biological cells. Biocontrol Sci 22, 175–180 (2017). https://doi.org/10.4265/bio.22.175

    Article  Google Scholar 

  9. Dawson, A., Rides, M., Maxwell, A.S., Cuenat, A., Samano, A.R.: Scanning thermal microscopy techniques for polymeric thin films using temperature contrast mode to measure thermal diffusivity and a novel approach in conductivity contrast. Polym. Test. 41, 198–208 (2015). https://doi.org/10.1016/j.polymertesting.2014.11.008

    Article  Google Scholar 

  10. Varandani, D., Agarwal, K.H., Brugger, J., Mehta, R.B.: Scanning thermal probe microscope method for the determination of thermal diffusivity of nanocomposite thin films. Rev. Sci. Instrum. 87, 084903 (2016). https://doi.org/10.1063/1.4960332

    Article  Google Scholar 

  11. Cui, L., Jeong, W., Hur, S., Matt, M., Klöckner, J.C., Pauly, F., Nielaba, P., Cuevas, J.C., Meyhofer, E., Reddy, P.: Quantized thermal transport in single-atom junctions. Science 355, 1192–1195 (2017). https://doi.org/10.1126/science.aam6622

    Article  Google Scholar 

  12. Wilson, A.A., Borca, T.H.T.: Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes. Rev. Sci. Instrum. 88, 074903 (2017). https://doi.org/10.1063/1.4991017.

    Article  Google Scholar 

  13. Trefon, D.R., Juszczyk, J., Fleming, A., Horny, N., Stéphane, J.A., Chirtoc, M., Kaźmierczak, A.B., Bodzenta, J.: Thermal characterization of metal phthalocyanine layers using photothermal radiometry and scanning thermal microscopy methods. Synth. Met. 232, 72–78 (2017). https://doi.org/10.1016/j.synthmet.2017.07.012

    Article  Google Scholar 

  14. Lee, H.L., Chu, S.H.S.H., Chang, W.J.: Vibration analysis of scanning thermal microscope probe nanomachining using Timoshenko beam theory. Curr. Appl. Phys. 10, 570–573 (2010). https://doi.org/10.1016/j.cap.2009.07.026

    Article  Google Scholar 

  15. Sohrabi, M., Torkanpouri, K.E.: Vibration analysis of dynamic mode scanning thermal microscope nanomachining probe. Results Phys. 13, 102164 (2019). https://doi.org/10.1016/j.rinp.2019.102164

    Article  Google Scholar 

  16. Torkanpouri, K.E., Zohoor, H., Korayem, M.H.: Effects of tip mass and interaction force on nonlinear behavior of force modulation FM-AFM cantilever. J. Mech. 33, 257–268 (2016). https://doi.org/10.1017/jmech.2016.44

    Article  Google Scholar 

  17. Hossein, A., Gh, P., Sadeghi, A.: Experimental and theoretical investigations about the nonlinear vibrations of rectangular atomic force microscope cantilevers immersed in different liquids. Arch. Appl. Mech. 90, 1893–1917 (2020). https://doi.org/10.1007/s00419-020-01703-5

    Article  Google Scholar 

  18. Potekin, R., Dharmasena, S., Keum, H., Jiang, X., Lee, J., Kim, S., Bergman, L.A., Vakakis, A.F., Cho, H.: Multi-frequency Atomic Force Microscopy based on enhanced internal resonance of an inner-paddled cantilever. Sensors Actuators A Phys. 273, 206–220 (2018). https://doi.org/10.1016/j.sna.2018.01.063

    Article  Google Scholar 

  19. Herruzo, E.T., Perrino, A.P., Garcia, R.: Fast nanomechanical spectroscopy of soft matter. Nat. Commun. 5, 3126 (2014). https://doi.org/10.1038/ncomms4126

    Article  Google Scholar 

  20. Garcia, R., Proksch, R.: Nanomechanical mapping of soft matter by bimodal force microscopy. Eur. Polym. J. 49, 1897–1906 (2013). https://doi.org/10.1016/j.eurpolymj.2013.03.037

    Article  Google Scholar 

  21. Gisbert, V.G., Benaglia, S., Uhlig, M.R., Proksch, R., Garcia, R.: High-speed nanomechanical mapping of the early stages of collagen growth by bimodal force microscopy. ACS Nano 15, 1850–1857 (2021). https://doi.org/10.1021/acsnano.0c10159

    Article  Google Scholar 

  22. Shi, S., Guo, D., Luo, J.: Interfacial interaction and enhanced image contrasts in higher mode and bimodal mode atomic force microscopy. RSC Adv. 7, 55121–55130 (2017). https://doi.org/10.1039/C7RA11635G

    Article  Google Scholar 

  23. Dietz, C.H., Schulze, M., Voss, A., Riesch, C.H., Stark, R.W.: Bimodal frequency-modulated atomic force microscopy with small cantilevers. Nanoscale 7, 1849–1856 (2015). https://doi.org/10.1039/C4NR05907G

    Article  Google Scholar 

  24. Torkanpouri, K.E., Zohoor, H., Korayem, M.H.: Global sensitivity analysis of backside coating parameters on dynamic response of AM-AFM. Mechanika 23, 282–290 (2017). https://doi.org/10.5755/j01.mech.23.2.13908

    Article  Google Scholar 

  25. Rao, S.S.: Vibration of Continuous Systems. Wiley, Hoboken (2019)

    Book  Google Scholar 

  26. Kreyszig, E.: Advanced Engineering Mathematics. Wiley, Hoboken (2017)

    MATH  Google Scholar 

  27. Hsu, J.C., Fang, T.H., Chang, W.J.: Inverse modeling of a workpiece temperature and melting depth during microthermal machining by scanning thermal microscope. J. Appl. Phys. 100, 064305 (2017). https://doi.org/10.1063/1.2345582

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kave E. Torkanpouri.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\(q_{l}\) is obtained from the solving equations by the Kramer method:

$$ q_{1} = \frac{{\left| {\begin{array}{*{20}c} {F_{1}^{1} \cos \omega_{\rm e}^{1} t + F_{1}^{2} \cos \omega_{\rm e}^{2} t} & {K_{12} } & {K_{13} } \\ {F_{2}^{1} \cos \omega_{\rm e}^{1} t + F_{2}^{2} \cos \omega_{\rm e}^{2} t} & {M_{2} D^{2} + K_{22} } & {K_{23} } \\ {F_{3}^{1} \cos \omega_{\rm e}^{1} t + F_{3}^{2} \cos \omega_{\rm e}^{2} t} & {K_{32} } & {M_{3} D^{2} + K_{33} } \\ \end{array} } \right|}}{{\left| {\begin{array}{*{20}c} {M_{1} D^{2} + K_{11} } & {K_{12} } & {K_{13} } \\ {K_{21} } & {M_{2} D^{2} + K_{22} } & {K_{23} } \\ {K_{31} } & {K_{32} } & {M_{3} D^{2} + K_{33} } \\ \end{array} } \right|}} $$
(37)
$$ q_{2} = \frac{{\left| {\begin{array}{*{20}c} {M_{1} D^{2} + K_{11} } & {F_{1}^{1} \cos \omega_{\rm e}^{1} t + F_{1}^{2} \cos \omega_{\rm e}^{2} t} & {K_{13} } \\ {K_{21} } & {F_{2}^{1} \cos \omega_{\rm e}^{1} t + F_{2}^{2} \cos \omega_{\rm e}^{2} t} & {K_{23} } \\ {K_{31} } & {F_{3}^{1} \cos \omega_{\rm e}^{1} t + F_{3}^{2} \cos \omega_{\rm e}^{2} t} & {M_{3} D^{2} + K_{33} } \\ \end{array} } \right|}}{{\left| {\begin{array}{*{20}c} {M_{1} D^{2} + K_{11} } & {K_{12} } & {K_{13} } \\ {K_{21} } & {M_{2} D^{2} + K_{22} } & {K_{23} } \\ {K_{31} } & {K_{32} } & {M_{3} D^{2} + K_{33} } \\ \end{array} } \right|}} $$
(38)
$$ q_{3} = \frac{{\left| {\begin{array}{*{20}c} {M_{1} D^{2} + K_{11} } & {K_{12} } & {F_{1}^{1} \cos \omega_{\rm e}^{1} t + F_{1}^{2} \cos \omega_{\rm e}^{2} t} \\ {K_{21} } & {M_{2} D^{2} + K_{22} } & {F_{2}^{1} \cos \omega_{\rm e}^{1} t + F_{2}^{2} \cos \omega_{\rm e}^{2} t} \\ {K_{31} } & {K_{32} } & {F_{3}^{1} \cos \omega_{\rm e}^{1} t + F_{3}^{2} \cos \omega_{\rm e}^{2} t} \\ \end{array} } \right|}}{{\left| {\begin{array}{*{20}c} {M_{1} D^{2} + K_{11} } & {K_{12} } & {K_{13} } \\ {K_{21} } & {M_{2} D^{2} + K_{22} } & {K_{23} } \\ {K_{31} } & {K_{32} } & {M_{3} D^{2} + K_{33} } \\ \end{array} } \right|}} $$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toossi, S.N., Torkanpouri, K.E. Mathematical modeling of nanomachining with bimodal dynamic scanning thermal microscope probe. Arch Appl Mech 92, 1679–1693 (2022). https://doi.org/10.1007/s00419-022-02127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02127-z

Keywords

Navigation