Skip to main content
Log in

Size-dependent stochastic vibration response of compositionally graded nanoplates with system randomness using nonlocal continuum model with partial support

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents the influence of randomness in material properties on the vibration response of functionally graded (FG) nanoplates using the nonlocal continuum model. Material properties such as Elastic modulus, Poisson’s ratio, and volume fraction index are modeled as independent random variables. A trigonometric shear-strain shape function-based refined shear deformation theory in conjunction with non-local theory has been presented for the first time to investigate the stochastic vibrational response of FG nanoplate. An efficient stochastic finite element formulation has been documented to capture the first- and second-order statistics of natural frequency. The first-order perturbation technique has been used to accommodate the effect of various material uncertainties parameters. The effective material properties have been computed using the recently developed modified rule of mixture to incorporate the porosity inclusion. The influence of conventional and unconventional (partial support) boundary constraints, porosity inclusion, small-scale effects, and material uncertainties on the vibration response of FG plates has been investigated in detail. In addition to this, the sensitivity of the functionally graded nanoplate has been observed in response to initial geometrical imperfection. It is observed that the variations in elastic modulus have a significant influence on the stochastic characteristics compared to Poisson’s ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Gupta, A., Talha, M.: Recent development in modeling and analysis of functionally graded materials and structures. Prog. Aerosp. Sci. 79, 1–14 (2015). https://doi.org/10.1016/j.paerosci.2015.07.001

    Article  Google Scholar 

  2. Gupta, A., Talha, M.: Influence of micro-structural defects on post-buckling and large-amplitude vibration of geometrically imperfect gradient plate. Nonlinear Dyn. 94, 39–56 (2018). https://doi.org/10.1007/s11071-018-4344-5

    Article  Google Scholar 

  3. Wang, Y.Q., Zu, J.W.: Vibration characteristics of moving sigmoid functionally graded plates containing porosities. Int. J. Mech. Mater. Des. 14, 473–489 (2018). https://doi.org/10.1007/s10999-017-9385-2

    Article  Google Scholar 

  4. Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R.: A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions. Steel Compos. Struct. 36, 355–367 (2020). https://doi.org/10.12989/SCS.2020.36.3.355

    Article  Google Scholar 

  5. Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E.A.A., Mahmoud, S.R., Tounsi, A., Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E.A.A., Mahmoud, S.R., Tounsi, A.: Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Comput. Concr. 26, 213–226 (2020). https://doi.org/10.12989/CAC.2020.26.3.213

    Article  Google Scholar 

  6. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M., Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M.: Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory. Comput. Concr. 26, 439–450 (2020). https://doi.org/10.12989/CAC.2020.26.5.439

    Article  Google Scholar 

  7. Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M., Mahmoud, S.R., Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M., Mahmoud, S.R.: Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation. Steel Compos. Struct. 38, 1–15 (2021). https://doi.org/10.12989/SCS.2021.38.1.001

    Article  Google Scholar 

  8. Hirane, H., Belarbi, M.-O., Houari, M.S.A., Tounsi, A.: On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates. Eng. Comput. (2021). https://doi.org/10.1007/s00366-020-01250-1

    Article  Google Scholar 

  9. Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Tounsi, A.: Bending analysis of functionally graded porous plates via a refined shear deformation theory. Comput. Concr. 26, 63–74 (2020)

    Google Scholar 

  10. Singh, B.N., Yadav, D., Iyengar, N.G.R.: Natural frequencies of composite plates with random material properties using higher-order shear deformation theory. Int. J. Mech. Sci. 43, 2193–2214 (2001). https://doi.org/10.1016/S0020-7403(01)00046-7

    Article  MATH  Google Scholar 

  11. Ali, M., Kim, S.I., Matthews, T.: Modeling of a compact functionally graded cellular structure: a finite element study for medium and high strain rates. Int. J. Mech. Mater. Des. 10, 79–92 (2014). https://doi.org/10.1007/s10999-013-9232-z

    Article  Google Scholar 

  12. Panda, S., Ray, M.C.: Finite element analysis for geometrically nonlinear deformations of smart functionally graded plates using vertically reinforced 1–3 piezoelectric composite. Int. J. Mech. Mater. Des. 4, 239–253 (2008). https://doi.org/10.1007/s10999-008-9054-6

    Article  Google Scholar 

  13. Safarpour, H., Esmailpoor Hajilak, Z., Habibi, M.: A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation. Int. J. Mech. Mater. Des. 15, 569–583 (2019). https://doi.org/10.1007/s10999-018-9431-8

    Article  Google Scholar 

  14. Alimirzaei, S., Mohammadimehr, M., Tounsi, A.: Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Struct. Eng. Mech. 71, 485–502 (2019)

    Google Scholar 

  15. Heidari, F., Taheri, K., Sheybani, M., Janghorban, M., Tounsi, A.: On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes. Steel Compos. Struct. 38, 533–545 (2021). https://doi.org/10.12989/SCS.2021.38.5.533

    Article  Google Scholar 

  16. Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M., Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M.: Steel and composite structures. Steel Compos. Struct. 37, 695 (2020). https://doi.org/10.12989/SCS.2020.37.6.695

    Article  Google Scholar 

  17. Trabelssi, M., El-Borgi, S., Friswell, M.I.: A high-order FEM formulation for free and forced vibration analysis of a nonlocal nonlinear graded Timoshenko nanobeam based on the weak form quadrature element method. Arch. Appl. Mech. 90, 2133–2156 (2020). https://doi.org/10.1007/S00419-020-01713-3/FIGURES/3

    Article  Google Scholar 

  18. Pei, Y.L., Li, L.X.: An uncoupled theory of FG nanobeams with the small size effects and its exact solutions. Arch. Appl. Mech. 91, 1713–1728 (2021). https://doi.org/10.1007/S00419-020-01849-2/TABLES/6

    Article  Google Scholar 

  19. Thai, L.M., Luat, D.T., Phung, V.B., Minh, P. Van., Thom, D. Van.: Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects. Arch. Appl. Mech. 2021, 1–20 (2021). https://doi.org/10.1007/S00419-021-02048-3

    Article  Google Scholar 

  20. Ton-That, H.L., Nguyen-Van, H., Chau-Dinh, T.: A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets. Arch. Appl. Mech. 916(91), 2435–2466 (2021). https://doi.org/10.1007/S00419-021-01893-6

    Article  Google Scholar 

  21. Zaoui, F.Z., Ouinas, D., Tounsi, A., Viña Olay, J.A., Achour, B., Touahmia, M.: Fundamental frequency analysis of functionally graded plates with temperature-dependent properties based on improved exponential-trigonometric two-dimensional higher shear deformation theory. Arch. Appl. Mech. 913(91), 859–881 (2020). https://doi.org/10.1007/S00419-020-01793-1

    Article  Google Scholar 

  22. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A.A., Tounsi, A., Mahmoud, S.R., Tounsi, A., Benrahou, K.H.: Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory. Adv. nano Res. 8, 293–305 (2020). https://doi.org/10.12989/ANR.2020.8.4.293

    Article  Google Scholar 

  23. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Bedia, E.A.A., Tounsi, A., Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Bedia, E.A.A., Tounsi, A.: Steel and Composite Structures. Steel Compos. Struct. 34, 643 (2020). https://doi.org/10.12989/SCS.2020.34.5.643

    Article  Google Scholar 

  24. Gupta, A., Joshi, A.Y., Sharma, S.C., Harsha, S.P.: Dynamic analysis of fixed-free single-walled carbon nanotube-based bio-sensors because of various viruses. IET Nanobiotechnology. 6, 115 (2012). https://doi.org/10.1049/IET-NBT.2011.005710.1049/IET-NBT.2011.0057

    Article  Google Scholar 

  25. Asghar, S., Naeem, M.N., Hussain, M., Taj, M., Tounsi, A.: Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis. Comput. Concr. 25, 133–144 (2020). https://doi.org/10.12989/CAC.2020.25.2.133

    Article  Google Scholar 

  26. Balubaid, M., Tounsi, A., Dakhel, B., Mahmoud, S.R.: Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory. Comput. Concr. 24, 579–586 (2019). https://doi.org/10.12989/CAC.2019.24.6.579

    Article  Google Scholar 

  27. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A., Mahmoud, S.R.: Dynamic analysis of nalysis FG rectangular plates based on simple nonlocal quasi 3D HSD. Adv. Nano Res. 7, 191–208 (2019). https://doi.org/10.12989/ANR.2019.7.3.191

    Article  Google Scholar 

  28. Berghouti, H., Bedia, E.A.A., Benkhedda, A., Tounsi, A.: Vibration analysis of nonlocal porous nanobeams made of functionally graded material. Adv. Nano Res. 7, 351–364 (2019). https://doi.org/10.12989/ANR.2019.7.5.351

    Article  Google Scholar 

  29. Kitipornchai, S., Yang, J., Liew, K.M.: Random vibration of the functionally graded laminates in thermal environments. Comput. Methods Appl. Mech. Eng. 195, 1075–1095 (2006). https://doi.org/10.1016/j.cma.2005.01.016

    Article  MATH  Google Scholar 

  30. Tomar, S.S., Talha, M.: Influence of material uncertainties on vibration and bending behaviour of skewed sandwich FGM plates. Compos. Part B Eng. 163, 779–793 (2019). https://doi.org/10.1016/j.compositesb.2019.01.035

    Article  Google Scholar 

  31. Shaker, A., Abdelrahman, W., Tawfik, M., Sadek, E.: Stochastic Finite element analysis of the free vibration of functionally graded material plates. Comput. Mech. 41, 707–714 (2008). https://doi.org/10.1007/s00466-007-0226-2

    Article  MATH  Google Scholar 

  32. Shaker, A., Abdelrahman, W.G., Tawfik, M., Sadek, E.: Stochastic finite element analysis of the free vibration of laminated composite plates. Comput. Mech. 41, 493–501 (2008). https://doi.org/10.1007/s00466-007-0205-7

    Article  MATH  Google Scholar 

  33. Yang, J., Liew, K.M., Kitipornchai, S.: Stochastic analysis of compositionally graded plates with system randomness under static loading. Int. J. Mech. Sci. 47, 1519–1541 (2005). https://doi.org/10.1016/j.ijmecsci.2005.06.006

    Article  MATH  Google Scholar 

  34. Talha, M., Singh, B.N.: Stochastic vibration characteristics of finite element modelled functionally gradient plates. Compos. Struct. 130, 95–106 (2015). https://doi.org/10.1016/j.compstruct.2015.04.030

    Article  Google Scholar 

  35. Mechab, B., Mechab, I., Benaissa, S., Ameri, M., Serier, B.: Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler-Pasternak elastic foundations. Appl. Math. Model. 40, 738–749 (2016). https://doi.org/10.1016/j.apm.2015.09.093

    Article  MathSciNet  MATH  Google Scholar 

  36. Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A., Ahmed, M.S.: A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient. Compos. Part B Eng. 42, 1386–1394 (2011). https://doi.org/10.1016/j.compositesb.2011.05.032

    Article  Google Scholar 

  37. Jagtap, K.R.R., Lal, A., Singh, B.N.N.: Stochastic nonlinear free vibration analysis of elastically supported functionally graded materials plate with system randomness in thermal environment. Compos. Struct. 93, 3185–3199 (2011). https://doi.org/10.1016/j.compstruct.2011.06.010

    Article  Google Scholar 

  38. Li, J., Chen, J.B.: Probability density evolution method for dynamic response analysis of structures with uncertain parameters. Comput. Mech. 34, 400–409 (2004). https://doi.org/10.1007/s00466-004-0583-8

    Article  MATH  Google Scholar 

  39. Pandit, M.K., Singh, B.N., Sheikh, A.H.: Stochastic free vibration response of soft core sandwich plates using an improved higher-order zigzag theory. J. Aerosp. Eng. 23, 14–23 (2010). https://doi.org/10.1061/(ASCE)0893-1321(2010)23:1(14)

    Article  Google Scholar 

  40. Kumaraian, M.L., Rebbagondla, J., Mathew, T.V., Natarajan, S.: Stochastic vibration analysis of functionally graded plates with material randomness using cell-based smoothed discrete shear gap method. Int. J. Struct. Stab. Dyn. 19, 1–20 (2019). https://doi.org/10.1142/S0219455419500378

    Article  MathSciNet  Google Scholar 

  41. Of, F., On, L., Of, U., Bhrigu, B., Yadav, D.: R m p c p. 873–879 (2001)

  42. Gupta, A., Talha, M.: Influence of porosity on the flexural and vibration response of gradient plate using nonpolynomial higher-order shear and normal deformation theory. Int. J. Mech. Mater. Des. 14, 1–20 (2017). https://doi.org/10.1007/s10999-017-9369-2

    Article  Google Scholar 

  43. Gupta, A., Talha, M.: Nonlinear flexural and vibration response of geometrically imperfect gradient plates using hyperbolic higher-order shear and normal deformation theory. Compos. Part B Eng. 123, 241–261 (2017). https://doi.org/10.1016/j.compositesb.2017.05.010

    Article  Google Scholar 

  44. Gupta, A., Talha, M., Singh, B.N.: Vibration characteristics of functionally graded material plate with various boundary constraints using higher order shear deformation theory. Compos. Part B Eng. 94, 64–74 (2016). https://doi.org/10.1016/j.compositesb.2016.03.006

    Article  Google Scholar 

  45. Bonollo, F., Urban, J., Bonatto, B., Botter, M.: Gravity and low pressure die casting of aluminium alloys: a technical and economical benchmark. La Metall. Ital. 23–32 (2005)

  46. Tanzadeh, H., Amoushahi, H.: Buckling and free vibration analysis of piezoelectric laminated composite plates using various plate deformation theories. Eur. J. Mech. A/Solids. 74, 242–256 (2019). https://doi.org/10.1016/j.euromechsol.2018.11.013

    Article  MathSciNet  MATH  Google Scholar 

  47. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47, 663–684 (2000)

    Article  Google Scholar 

  48. Gn, P., Jn, R.: Nonlinear transient thermoelastic analysis of functionally graded ramic–metal plates. Int. J. Solids Struct. 35, 4457–71 (1998)

    Article  Google Scholar 

  49. Chen, C.S.: Nonlinear vibration of a shear deformable functionally graded plate. Compos. Struct. 68, 295–302 (2005). https://doi.org/10.1016/j.compstruct.2004.03.022

    Article  Google Scholar 

  50. Kumar Chaudhari, V., Gupta, A., Talha, M.: Nonlinear vibration response of shear deformable functionally graded plate using finite element method. Procedia Technol. 23, 201–208 (2016). https://doi.org/10.1016/j.protcy.2016.03.018

    Article  Google Scholar 

  51. Reddy, J.N., Cheng, Z.Q.: Frequency of functionally graded plates with three-dimensional asymptotic approach. J. Eng. Mech. 129, 896–900 (2003). https://doi.org/10.1061/(ASCE)0733-9399(2003)129:8(896)

    Article  Google Scholar 

  52. Zenkour, A.M., Aljadani, M.H.: Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates. Eur. J. Mech. A/Solids. 78, 103835 (2019). https://doi.org/10.1016/j.euromechsol.2019.103835

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang, Y.Q., Wan, Y.H., Zhang, Y.F.: Vibrations of longitudinally traveling functionally graded material plates with porosities. Eur. J. Mech. A/Solids. 66, 55–68 (2017). https://doi.org/10.1016/j.euromechsol.2017.06.006

    Article  MathSciNet  MATH  Google Scholar 

  54. Shahrbabaki, E.A.: On three-dimensional nonlocal elasticity: Free vibration of rectangular nanoplate. Eur. J. Mech. A/Solids. 71, 122–133 (2018). https://doi.org/10.1016/j.euromechsol.2018.03.004

    Article  MathSciNet  MATH  Google Scholar 

  55. Afshari Ann Arbor, MI (United States)], P. [KEI E., Widera Milwaukee, WI (United States). Dept. of Industrial and Mechanical Engineering], G.E.O. [Marquette U.: Free vibration analysis of laminated composite plates. 191, 721–738 (1995)

  56. Sarangan, S., Singh, B.N.: Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories. Compos. Struct. 138, 391–403 (2016). https://doi.org/10.1016/j.compstruct.2015.11.049

    Article  Google Scholar 

  57. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972). https://doi.org/10.1016/0020-7225(72)90039-0

    Article  MathSciNet  MATH  Google Scholar 

  58. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703 (1983). https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  59. Thai, H.T., Choi, D.H.: Efficient higher-order shear deformation theories for bending and free vibration analyses of functionally graded plates. Arch. Appl. Mech. 83, 1755–1771 (2013). https://doi.org/10.1007/s00419-013-0776-z

    Article  MATH  Google Scholar 

  60. Suganyadevi, S., Singh, B.N.: Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories. Compos. Struct. 138, 391–403 (2015)

    Google Scholar 

  61. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V., Tompe, U.K.: Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure. J. Eng. Mech. 144, 1–8 (2018). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519

    Article  Google Scholar 

  62. Gupta, A., Talha, M.: An assessment of a non-polynomial based higher order shear and normal deformation theory for vibration response of gradient plates with initial geometric imperfections. Compos. Part B 107, 141–161 (2016). https://doi.org/10.1016/j.compositesb.2016.09.071

    Article  Google Scholar 

  63. Yang, J., Liew, K.M., Kitipornchai, S.: Imperfection sensitivity of the post-buckling behavior of higher-order shear deformable functionally graded plates. Int. J. Solids Struct. 43, 5247–5266 (2006). https://doi.org/10.1016/j.ijsolstr.2005.06.061

    Article  MATH  Google Scholar 

  64. Jha, D.K., Kant, T., Singh, R.K.: Free vibration response of functionally graded thick plates with shear and normal deformations effects. Compos. Struct. 96, 799–823 (2013). https://doi.org/10.1016/j.compstruct.2012.09.034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Gupta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, Y., Gupta, A. Size-dependent stochastic vibration response of compositionally graded nanoplates with system randomness using nonlocal continuum model with partial support. Arch Appl Mech 92, 1053–1081 (2022). https://doi.org/10.1007/s00419-021-02092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02092-z

Keywords

Navigation