Skip to main content
Log in

Detecting and locating delamination defect in multilayer pipes using torsional guided wave

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Delamination is a major defect in composite structures, such as multilayer pipes, that degrade the mechanical properties and longevity of these pipes. Therefore, in this research, using torsional guided wave has been considered to detect delamination in the multilayer pipes. First, an analytical investigation of torsional wave propagation in intact multilayer pipes has been used, and the corresponding dispersion curves and group velocity have been plotted following the implemented boundary conditions of the problem. Moreover, this research used the finite element method to simulate the torsional wave propagation in these pipes and implemented the analytical results to validate the simulated model, extended later to study the delamination defect. Besides detecting and determining the location of the applied defect, the influences of the geometric parameters of the defect, such as length and position, were also explored. The results indicated the advantages of using torsional guided waves to identify the delamination defect and its location in multilayer pipes. Moreover, based on the decreased reflection coefficient of delamination defects in the inner layers compared to the outer counterparts, this research distinguished the interface between the two adjacent layers where the delamination occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Eijo, A., Oñate, E., Oller, S.: A numerical model of delamination in composite laminated beams using the LRZ beam element based on the refined zigzag theory. Compos. Struct. 104, 270–280 (2013). https://doi.org/10.1016/j.compstruct.2013.04.035

    Article  Google Scholar 

  2. Hosseini-Toudeshky, H., Hosseini, S., Mohammadi, B., Hosseini Toudeshky, H., Hosseini, S., Mohammadi, B.: Delamination buckling growth in laminated composites using layerwise-interface element. Compos. Struct. 92(8), 1846–1856 (2010). https://doi.org/10.1016/j.compstruct.2010.01.013

    Article  MATH  Google Scholar 

  3. Tan, J.J., Wang, X., Guo, N., Ho, J.H.: Parametric study of defect detection in pipes with bend using guided ultrasonic waves. MATEC Web of Conferences 71, 02003 (2016)

    Article  Google Scholar 

  4. Gazis, D.C.: Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. Analytical foundation. J. Acoust. Soc. Am. 31(5), 568–573 (1959)

    Article  MathSciNet  Google Scholar 

  5. Gazis, D.C.: Three-dimensional investigation of the propagation of waves in hollow circular cylinders. II. Numerical results. J. Acoust. Soc. Am. 31(5), 573–578 (1959). https://doi.org/10.1121/1.1907754

    Article  MathSciNet  Google Scholar 

  6. Rose, J.L.: Ultrasonic Guided Waves In Solid Media. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  7. Lai, J., Dowell, E.H., Tauchert, T.R.: Propagation of harmonic waves in a composite elastic cylinder. J. Acoust. Soc. Am. 49(1B), 220–228 (1971). https://doi.org/10.1121/1.1912320

    Article  MATH  Google Scholar 

  8. Whittier, J.S., Jones, J.P.: Axially symmetric wave propagation in a two-layered cylinder. Int. J. Solids Struct. 3(4), 657–675 (1967)

    Article  Google Scholar 

  9. Akbarov, S.D., Kepceler, T., Egilmez, M.M.: Torsional wave dispersion in a finitely pre-strained hollow sandwich circular cylinder. J. Sound Vib. 330(18–19), 4519–4537 (2011)

    Article  Google Scholar 

  10. Guz, A.N.: Elastic waves in bodies with initial (residual) stresses. Int. Appl. Mech. 38(1), 23–59 (2002)

    Article  MathSciNet  Google Scholar 

  11. Yeung, C., Ng, C.T.: Time-domain spectral finite element method for analysis of torsional guided waves scattering and mode conversion by cracks in pipes. Mech. Syst. Signal Process. 128, 305–317 (2019). https://doi.org/10.1016/j.ymssp.2019.04.013

    Article  Google Scholar 

  12. Liu, G., Qu, J.: Guided circumferential waves in a circular annulus. J. Appl. Mech. Trans. ASME 65(2), 424–430 (1998). https://doi.org/10.1115/1.2789071

    Article  Google Scholar 

  13. Dean, M.: Torsional Wave Dispersion in a Composite Cylinder with a Functionally Graded Core and an Imperfect Interface. The Ohio State University, Ohio (2013)

    Google Scholar 

  14. Miao, H., Huan, Q., Wang, Q., Li, F.: Excitation and reception of single torsional wave T (0,1) mode in pipes using face-shear d24 piezoelectric ring array. Smart Mater. Struct. 26(2), 025021 (2017). https://doi.org/10.1088/1361-665X/26/2/025021

    Article  Google Scholar 

  15. Luo, W.: Ultrasonic Guided Waves and Wave Scattering in Viscoelastic Coated Hollow Cylinders. The Pennsylvania State University, State College (2005)

    Google Scholar 

  16. Hua, J., Rose, J.L.: Guided wave inspection penetration power in viscoelastic coated pipes. Insight-Non-Destructive Test. Cond. Monit. 52(4), 195–205 (2010). https://doi.org/10.1784/insi.2010.52.4.195

    Article  Google Scholar 

  17. Lowe, M.J.S., Alleyne, D.N., Cawley, P.: Defect detection in pipes using guided waves. Ultrasonics 36(1–5), 147–154 (1998)

    Article  Google Scholar 

  18. Furukawa, T., Komura, I.: Simulation and visualization of guided wave propagation by large-scale 3D FEM. E-J. Adv. Maint. Jpn. Soc. Maintenol. 33, 92–101 (2011)

    Google Scholar 

  19. Fernandez, K., Rojas, E., Baltazar, A., Mijarez, R.: Detection of torsional guided wave generation using macro-fiber composite transducers and basis pursuit denoising. Arch. Appl. Mech. 91(5), 1945–1958 (2021). https://doi.org/10.1007/s00419-020-01863-4

    Article  Google Scholar 

  20. Zhang, X., Tang, Z., Lv, F., Yang, K.: Scattering of torsional flexural guided waves from circular holes and crack-like defects in hollow cylinders. NDT E Int. 89, 56–66 (2017)

    Article  Google Scholar 

  21. Demma, A., Cawley, P., Lowe, M., Roosenbrand, A.G.: The reflection of the fundamental torsional mode from cracks and notches in pipes. J. Acoust. Soc. Am. 114(2), 611–625 (2003). https://doi.org/10.1121/1.1582439

    Article  Google Scholar 

  22. Løvstad, A., Cawley, P.: The reflection of the fundamental torsional mode from pit clusters in pipes. NDT E Int. 46, 83–93 (2012)

    Article  Google Scholar 

  23. Gao, T., Liu, X., Zhu, J., Zhao, B., Qing, X.: Multi-frequency localized wave energy for delamination identification using laser ultrasonic guided wave. Ultrasonics 116, 106486 (2021). https://doi.org/10.1016/J.ULTRAS.2021.106486

    Article  Google Scholar 

  24. Hervin, F., Maio, L., Fromme, P.: Guided wave scattering at a delamination in a quasi-isotropic composite laminate: experiment and simulation. Compos. Struct. 275, 114406 (2021). https://doi.org/10.1016/J.COMPSTRUCT.2021.114406

    Article  Google Scholar 

  25. Long, S., Yao, X., Zhang, X.: Delamination prediction in composite laminates under low-velocity impact. Compos. Struct. 132, 290–298 (2015). https://doi.org/10.1016/j.compstruct.2015.05.037

    Article  Google Scholar 

  26. Carboni, M., Gianneo, A., Giglio, M.: A Lamb waves based statistical approach to structural health monitoring of carbon fibre reinforced polymer composites. Ultrasonics 60, 51–64 (2015). https://doi.org/10.1016/j.ultras.2015.02.011

    Article  Google Scholar 

  27. Dong, J., Kim, B., Locquet, A., McKeon, P., Declercq, N., Citrin, D.S.: Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Compos. Part B Eng. 79, 667–675 (2015). https://doi.org/10.1016/j.compositesb.2015.05.028

    Article  Google Scholar 

  28. Soleimanpour, R., Ng, C.-T.: Locating delaminations in laminated composite beams using nonlinear guided waves. Eng. Struct. 131, 207–219 (2017). https://doi.org/10.1016/j.engstruct.2016.11.010

    Article  Google Scholar 

  29. Zelenyak, A.-M.M., Schorer, N., Sause, M.G.R.R.: Modeling of ultrasonic wave propagation in composite laminates with realistic discontinuity representation. Ultrasonics 83, 103–113 (2018). https://doi.org/10.1016/j.ultras.2017.06.014

    Article  Google Scholar 

  30. Yelve, N.P., Mitra, M., Mujumdar, P.M.: Detection of delamination in composite laminates using Lamb wave based nonlinear method. Compos. Struct. 159, 257–266 (2016). https://doi.org/10.1016/j.compstruct.2016.09.073

    Article  Google Scholar 

  31. Zhu, F., Pan, E., Qian, Z., Luo, Z.: Waves in a generally anisotropic viscoelastic composite laminated bilayer: impact of the imperfect interface from perfect to complete delamination. Int. J. Solids Struct. 202, 262–277 (2020). https://doi.org/10.1016/j.ijsolstr.2020.05.031

    Article  Google Scholar 

  32. Joseph, R., Li, L., Haider, M.F., Giurgiutiu, V.: Hybrid SAFE-GMM approach for predictive modeling of guided wave propagation in layered media. Eng. Struct. 193(April), 194–206 (2019). https://doi.org/10.1016/j.engstruct.2019.04.082

    Article  Google Scholar 

  33. Zhu, K., Qing, X.P., Liu, B.: Torsional guided wave-based debonding detection in honeycomb sandwich beams. Smart Mater. Struct. 25(11), 1–11 (2016). https://doi.org/10.1088/0964-1726/25/11/115048

    Article  Google Scholar 

  34. Shkerdin, G., Glorieux, C.: Interaction of lamb modes with delaminations in plates coated by highly absorbing materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(2), 368–377 (2007)

    Article  Google Scholar 

  35. Hinders, M.K., Bingham, J.P.: Lamb wave pipe coating disbond detection using the dynamic wavelet fingerprinting technique. AIP Conf. Proc. 1211(1), 615–622 (2010)

    Article  Google Scholar 

  36. Talebitooti, R., Daneshjou, K., Tarkashvand, A.: Incorporating the Havriliak–Negami model in wave propagation through polymeric viscoelastic core in a laminated sandwich cylinder. Thin-Walled Struct. 134, 460–474 (2019). https://doi.org/10.1016/j.tws.2018.10.021

    Article  Google Scholar 

  37. Dassault Systèmes, D.S.: “Abaqus analysis user’s guide,” Technical Report Abaqus 6.14 Documentation, Simulia Corp (2016)

  38. Huan, Q., Chen, M., Li, F.: Long-distance structural health monitoring of buried pipes using pitch-catch T(0,1) wave piezoelectric ring array transducers. Ultrasonics 106, 106162 (2020). https://doi.org/10.1016/J.ULTRAS.2020.106162

    Article  Google Scholar 

  39. Gresil, M., Poohsai, A., Chandarana, N.: Guided wave propagation and damage detection in composite pipes using piezoelectric sensors. Procedia Eng. 188, 148–155 (2017). https://doi.org/10.1016/j.proeng.2017.04.468

    Article  Google Scholar 

  40. Bocchini, P., Marzani, A., Viola, E.: Graphical user interface for guided acoustic waves. J. Comput. Civ. Eng. 25(3), 202–210 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Research Council of the Shahid Chamran University of Ahvaz, Iran, for their kind support (SCU.EM97.29321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Mosalmani.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmansouri, M., Mosalmani, R., Yaghootian, A. et al. Detecting and locating delamination defect in multilayer pipes using torsional guided wave. Arch Appl Mech 92, 1037–1052 (2022). https://doi.org/10.1007/s00419-021-02091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02091-0

Keywords

Navigation