Skip to main content

Advertisement

Log in

Topology optimization of single-groove acoustic metasurfaces using genetic algorithms

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Acoustic and elastic waves can be manipulated by a novel artificial metasurface, usually composed of different microstructures. In this paper, the topology optimization technique was introduced to design single-groove acoustic metasurfaces based on genetic algorithms. The mixed variables are proposed to design the layouts of grooves, and a new objective function of anomalous refraction is established. Three case studies were obtained as follows: (1) anomalous refraction, (2) beam focusing, and (3) self-accelerating beams. Compared with the original single-groove metasurface, the optimized one has less scattering in the transmitted field, and its numerical simulation results are closer to the predicted values. This research is expected to contribute highly to the field of vibration and noise isolation, elastic wave filters, and acoustic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang, K., Qiu, C., Ke, M., Lu, J., Ye, Y., Liu, Z.: Anomalous refraction of airborne sound through ultrathin metasurfaces. Sci. Rep. 4, 1–7 (2014)

    Article  Google Scholar 

  2. Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I., Cummer, S.A.: Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 5, 1–5 (2014)

    Article  Google Scholar 

  3. Díaz-Rubio, A., Tretyakov, S.A.: Acoustic metasurfaces for scattering-free anomalous reflection and refraction. Phys. Rev. B 96, 125409 (2017)

    Article  Google Scholar 

  4. Lan, J., Zhang, X., Liu, X., Li, Y.: Wavefront manipulation based on transmissive acoustic metasurface with membrane-type hybrid structure. Sci. Rep. 8, 1–9 (2018)

    Article  Google Scholar 

  5. Wong, A.M., Eleftheriades, G.V.: Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys. Rev. X 8, 011036 (2018)

    Google Scholar 

  6. Zhou, J., Zhang, X., Fang, Y.: Analytical modelling for predicting the sound field of planar acoustic metasurface. J. Appl. Phys. 123, 033106 (2018)

    Article  Google Scholar 

  7. Li, X.-S., Wang, Y.-F., Chen, A.-L., Wang, Y.-S.: Modulation of out-of-plane reflected waves by using acoustic metasurfaces with tapered corrugated holes. Sci. Rep. 9 (2019)

  8. Chen, A., Tang, Q., Wang, H., Zhao, S., Wang, Y.: Multifunction switching by a flat structurally tunable acoustic metasurface for transmitted waves, Science China. Phys. Mech. Astron. 63, 244611 (2020)

    Article  Google Scholar 

  9. Li, Y., Liang, B., Tao, X., Zhu, X.-F., Zou, X.-Y., Cheng, J.-C.: Acoustic focusing by coiling up space. Appl. Phys. Lett. 101, 233508 (2012)

    Article  Google Scholar 

  10. Tang, D., Wang, C., Zhao, Z., Wang, Y., Pu, M., Li, X., Gao, P., Luo, X.: Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photon. Rev. 9, 713–719 (2015)

    Article  Google Scholar 

  11. Zhai, S., Chen, H., Ding, C., Shen, F., Luo, C., Zhao, X.: Manipulation of transmitted wave front using ultrathin planar acoustic metasurfaces. Appl. Phys. A 120, 1283–1289 (2015)

    Article  Google Scholar 

  12. Tian, Y., Tan, Z., Han, X., Li, W.: Phononic crystal lens with an asymmetric scatterer. J. Phys. D Appl. Phys. 52, 025102 (2018)

    Article  Google Scholar 

  13. Zhang, P., Li, T., Zhu, J., Zhu, X., Yang, S., Wang, Y., Yin, X., Zhang, X.: Generation of acoustic self-bending and bottle beams by phase engineering. Nat. Commun. 5, 1–9 (2014)

    Google Scholar 

  14. Chen, X., Liu, P., Hou, Z., Pei, Y.: Magnetic-control multifunctional acoustic metasurface for reflected wave manipulation at deep subwavelength scale. Sci. Rep. 7, 1–9 (2017)

    Google Scholar 

  15. Fan, S.-W., Zhao, S.-D., Chen, A.-L., Wang, Y.-F., Assouar, B., Wang, Y.-S.: Tunable broadband reflective acoustic metasurface. Phys. Rev. Appl. 11, 044038 (2019)

    Article  Google Scholar 

  16. Zhou, J., Zhang, X., Fang, Y.: Three-dimensional acoustic characteristic study of porous metasurface. Compos. Struct. 176, 1005–1012 (2017)

    Article  Google Scholar 

  17. Fang, Y., Zhang, X., Zhou, J.: Experiments on reflection and transmission of acoustic porous metasurface with composite structure. Compos. Struct. 185, 508–514 (2018)

    Article  Google Scholar 

  18. Liu, Y., Liang, Z., Liu, F., Diba, O., Lamb, A., Li, J.: Source illusion devices for flexural Lamb waves using elastic metasurfaces. Phys. Rev. Lett. 119, 034301 (2017)

    Article  Google Scholar 

  19. Fan, X.-D., Liang, B., Yang, J., Cheng, J.-C.: Illusion for Airborne sound source by a Closed Layer with subwavelength thickness. Sci. Rep. 9, 1–6 (2019)

    Article  Google Scholar 

  20. Zhu, H., Semperlotti, F.: Anomalous refraction of acoustic guided waves in solids with geometrically tapered metasurfaces. Phys. Rev. Lett. 117, 034302 (2016)

    Article  Google Scholar 

  21. Zhao, S.-D., Chen, A.-L., Wang, Y.-S., Zhang, C.: Continuously tunable acoustic metasurface for transmitted wavefront modulation. Phys. Rev. Appl. 10, 054066 (2018)

    Article  Google Scholar 

  22. Zhang, J., Zhang, X., Xu, F., Ding, X., Deng, M., Hu, N., Zhang, C.: Vibration control of flexural waves in thin plates by 3D-printed metasurfaces. J. Sound Vibr. 481, 115440 (2020)

    Article  Google Scholar 

  23. Yuan, S.-M., Chen, A.-L., Wang, Y.-S.: Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation. J. Sound Vibr. 470, 115168 (2020)

    Article  Google Scholar 

  24. Cao, L., Yang, Z., Xu, Y., Chen, Z., Zhu, Y., Fan, S.-W., Donda, K., Vincent, B., Assouar, B.: Pillared elastic metasurface with constructive interference for flexural wave manipulation. Mech. Syst. Signal Process. 146, 107035 (2021)

    Article  Google Scholar 

  25. Xu, W., Zhang, M., Ning, J., Wang, W., Yang, T.: Anomalous refraction control of mode-converted elastic wave using compact notch-structured metasurface. Mater. Res. Express 6, 065802 (2019)

    Article  Google Scholar 

  26. Kaveh, A., Bakhshpoori, T.: Metaheuristics: Outlines, MATLAB codes and examples. Springer (2019)

    Book  MATH  Google Scholar 

  27. Yang, H., Cao, X., Yang, F., Gao, J., Xu, S., Li, M., Chen, X., Zhao, Y., Zheng, Y., Li, S.: A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep. 6, 35692 (2016)

    Article  Google Scholar 

  28. Sun, H., Gu, C., Chen, X., Li, Z., Liu, L., Xu, B., Zhou, Z.: Broadband and broad-angle polarization-independent metasurface for radar cross section reduction. Sci. Rep. 7, 40782 (2017)

    Article  Google Scholar 

  29. Jafar-Zanjani, S., Inampudi, S., Mosallaei, H.: Adaptive genetic algorithm for optical metasurfaces design. Sci. Rep. 8, 1–16 (2018)

    Article  Google Scholar 

  30. Li, H., Wang, G., Cai, T., Hou, H., Guo, W.: Wideband transparent beam-forming metadevice with amplitude-and phase-controlled metasurface. Phys. Rev. Appl. 11, 014043 (2019)

    Article  Google Scholar 

  31. Fan, Y., Xu, Y., Qiu, M., Jin, W., Zhang, L., Lam, E.Y., Tsai, D.P., Lei, D.: Phase-controlled metasurface design via optimized genetic algorithm. Nanophotonics 1, 3931–3939 (2020)

    Article  Google Scholar 

  32. Han, J., Cao, X., Gao, J., Yu, H., Zhang, Z., Li, S.: A coding optimized polarization conversion metasurface in broadband and wide-angle. Int. J. RF Microw. Comput. Aid. Eng. 30, e22061 (2020)

    Article  Google Scholar 

  33. Zhu, R., Qiu, T., Wang, J., Sui, S., Li, Y., Feng, M., Ma, H., Qu, S.: Multiplexing the aperture of a metasurface: inverse design via deep-learning-forward genetic algorithm. J. Phys. D Appl. Phys. 53, 455002 (2020)

    Article  Google Scholar 

  34. Li, W., Meng, F., Huang, X.: Coding metalens with helical-structured units for acoustic focusing and splitting. Appl. Phys. Lett. 117, 021901 (2020)

    Article  Google Scholar 

  35. Sun, H., Wang, S., Huang, S., Peng, L., Wang, Q., Zhao, W., Zou, J.: 3D focusing acoustic lens optimization method using multi-factor and multi-level orthogonal test designing theory. Appl. Acoust. 170, 107538 (2020)

    Article  Google Scholar 

  36. Rong, J., Ye, W.: Multifunctional elastic metasurface design with topology optimization. Acta Mater. 185, 382–399 (2020)

    Article  Google Scholar 

  37. Koohestani, K.: Form-finding of tensegrity structures via genetic algorithm. Int. J. Solids Struct. 49, 739–747 (2012)

    Article  Google Scholar 

  38. Chen, Y., Yan, J., Feng, J., Sareh, P.: Particle swarm optimization-based metaheuristic design generation of non-trivial flat-foldable origami tessellations with degree-4 vertices. J. Mech. Design 143, 011703 (2021)

    Article  Google Scholar 

  39. Chen, Y., Fan, L., Bai, Y., Feng, J., Sareh, P.: Assigning mountain-valley fold lines of flat-foldable origami patterns based on graph theory and mixed-integer linear programming. Comput. Struct. 239, 106328 (2020)

    Article  Google Scholar 

  40. Chen, Y., Feng, J., Wu, Y.: Novel form-finding of tensegrity structures using ant colony systems. (2012)

  41. Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.-P., Capasso, F., Gaburro, Z.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  Google Scholar 

  42. Xu, W., Zhang, M., Lin, Z., Liu, C., Qi, W., Wang, W.: Anomalous refraction manipulation of Lamb waves using single-groove metasurfaces. Phys. Scr. 94, 105807 (2019)

    Article  Google Scholar 

  43. Li, S., Xu, J., Tang, J.: Tunable modulation of refracted lamb wave front facilitated by adaptive elastic metasurfaces. Appl. Phys. Lett. 112, 021903 (2018)

    Article  Google Scholar 

  44. Li, Y., Liang, B., Gu, Z.-M., Zou, X.-Y., Cheng, J.-C.: Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. 3, 2546 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11502149,11302135), Natural Science Foundation of Liaoning Province (Nos. 2019-ZD-0229, 2019-ZD-0228 and 2019-ZD-0297), Scientific Research Fund of Liaoning Provincial Education Department (No. JYT19056), Natural Science Foundation of Suqian City (No. K202124), Scientific Research Foundation of Suqian University. The financial contributions are gratefully acknowledged.

Funding

Funding was provided by Natural Science Foundation of Liaoning Province, 2019-ZD-0229, Weikai Xu

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “Topology Optimization of Single-groove Acoustic Metasurfaces Using Genetic Algorithms.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Wang, W., Xu, W. et al. Topology optimization of single-groove acoustic metasurfaces using genetic algorithms. Arch Appl Mech 92, 961–969 (2022). https://doi.org/10.1007/s00419-021-02084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02084-z

Keywords

Navigation