Skip to main content
Log in

Pull-in instability and vibration of quasicrystal circular nanoplate actuator based on surface effect and nonlocal elastic theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

With excellent electrical and mechanical properties, multi-layer structures containing quasicrystals (QCs) have gradually used in the new generation of information technology and semiconductor fields. Currently most studies on QC nanostructures focus on static rather than dynamic behaviors. Based on the nonlocal theory and Gurtin–Murdoch surface elasticity, a dynamic model of nano-QC circular plate actuator under electromechanical loads is established. The plates are clamp-supported around and the electrostatic and Casimir forces between the plates are considered in this paper. When the applied voltage reaches a certain value, the deformation of the plate will suddenly increase sharply and become unstable. The numerical solution of the governing equation is obtained by using the generalized differential quadrature method. The instability deformation, the frequency, and electrostatic driving voltage of the nanoplate with different nonlocal parameters and machining residual stress are discussed. The results show that the sensitivities of circular plates with different geometric parameters and material constants characterizing the nanoscale effect are different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pelesko, J., Bernstein, D.: Modeling MEMS and NEMS. CRC Press, Boca Raton (2002)

    Book  MATH  Google Scholar 

  2. Leondes, C.T.: MEMS/NEMS: handbook techniques and applications. Springer, New York (2006)

    Book  Google Scholar 

  3. Liebold, C., Müller, W.H.: Strain maps on statically bend (001) silicon microbeams using AFM-integrated raman spectroscopy. Arch. Appl. Mech. 85(9–10), 1353–1362 (2015)

    Article  Google Scholar 

  4. Zozulya, V.V., Saez, A.: A high-order theory of a thermoelastic beams and its application to the MEMS/NEMS analysis and simulations. Arch. Appl. Mech. 86(7), 1255–1272 (2016)

    Article  Google Scholar 

  5. Schulz, M.: Polymer derived ceramics in MEMS/NEMS—a review on production processes and application. Adv. Appl. Ceram. 108, 454–460 (2009)

    Article  Google Scholar 

  6. Rong, H., Huang, Q.A., Nie, M., Li, W.H.: An analytical model for pull-in voltage of clamped-clamped multilayer beams. Sensor. Actuat. A Phys. 116(1), 15–21 (2004)

    Article  Google Scholar 

  7. He, J., Xie, J., He, X., Du, L., Zhou, W., Hu, Z.: Analytical and high accurate formula for electrostatic force of comb-actuators with ground substrate. Microsyst. Technol. 22(2), 255–260 (2016)

    Article  Google Scholar 

  8. Toshiyoshi, H., Fujita, H.: Electrostatic micro torsion mirrors for an optical switch matrix. IEEE J. Microelectromech. Syst. 5(4), 231–237 (1996)

    Article  Google Scholar 

  9. Sattler, R., Plotz, F., Fattinger, G., Wachutka, G.: Modeling of an electrostatic torsional actuator: demonstrated with an RF MEMS switch. Sens. Actuators A Phys. 4, 337–346 (2002)

    Article  Google Scholar 

  10. Giustino, A.: Interferometry GPS/Micro-Mechanical Gyro attitude determination system: a study into the integration issues. Massachusetts Institute of Technology, pp. 24–37 (1998)

  11. Chowdhury, S., Ahmadi, M., Miller, W.C.: Pull-in voltage study of electrostatically actuated fixed-fixed beams using a VLSI on-chip interconnect capacitance model. J. Microelectromech. Syst. 15(3), 639–651 (2006)

    Article  Google Scholar 

  12. Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187–218 (2014)

    Article  Google Scholar 

  13. Osterberg, P.M., Senturia, S.D.: M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. Syst. 6, 107–118 (1997)

    Article  Google Scholar 

  14. Ramezani, A., Alasty, A., Akbari, J.: Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces. Int. J. Solids Struct. 44, 4925–4941 (2007)

    Article  MATH  Google Scholar 

  15. Johnstone, R.W., Parameswaran, M.: Theoretical limits on the freestanding length of cantilevers produced by surface micromachining technology. J. Micromech. Microeng. 12, 855 (2002)

    Article  Google Scholar 

  16. Yang, J., Jia, X., Kitipornchai, S.: Pull-in instability of nano-switches using nonlocal elasticity theory. J. Phys. D: Appl. Phys. 41, 035103 (2008)

    Article  Google Scholar 

  17. Assadi, A., Najaf, H.: Nonlinear static bending of single-crystalline circular nanoplates with cubic material anisotropy. Arch. Appl. Mech. 90(4), 847–868 (2020)

    Article  Google Scholar 

  18. Fakhrabadi, M.S., Rastgoo, A., Ahmadian, M.T.: Size-dependent instability of carbon nanotubes under electrostatic actuation using nonlocal elasticity. Int. J. Mech. Sci. 80, 144–152 (2014)

    Article  Google Scholar 

  19. Shaat, M., Mahmoud, F.F., Gao, X.L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nanoplates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)

    Article  Google Scholar 

  20. Sedighi, H.M.: Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. Acta Astronaut. 95, 111–123 (2014)

    Article  Google Scholar 

  21. Wang, K.F., Wang, B.L.: A general model for nano-cantilever switches with consideration of surface effects and nonlinear curvature. Phys. E Low Dimens. Syst. Nanostruct. 66, 197–208 (2015)

    Article  Google Scholar 

  22. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: On the influence of residual surface stresses on the properties of structures at the nanoscale. Adv. Struct. Mater. 30, 21–32 (2013)

    Article  MathSciNet  Google Scholar 

  23. Wang, Z.Q., Zhao, Y.P., Huang, Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010)

    Article  Google Scholar 

  24. Chen, T., Chiu, M.S., Weng, C.N.: Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006)

    Article  Google Scholar 

  25. Olsson, P.A.T., Park, H.S.: On the importance of surface elastic contributions to the flexural rigidity of nanowires. J. Mech. Phys. Solids 60, 2064–2083 (2012)

    Article  MathSciNet  Google Scholar 

  26. Wang, G.F., Feng, X.Q.: Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett. 94, 141913 (2009)

    Article  Google Scholar 

  27. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  Google Scholar 

  28. Dubois, J.M.: Useful quasicrystals. World Scientific, Singapore (2005)

    Book  Google Scholar 

  29. Fan, T.Y.: The mathematical theory elasticity of quasicrystals and its applications. Springer, Singapore (2010)

    MATH  Google Scholar 

  30. Sun, T.Y., Guo, J.H., Zhang, X.Y.: Static deformation of a multilayered one-dimensional hexagonal quasicrystal plate with piezoelectric effect. Appl. Math. Mech. Engl. 39(3), 33–50 (2018)

    Article  MathSciNet  Google Scholar 

  31. Yang, L.Z., Li, Y., Gao, Y., Pan, E., Waksmanski, N.: Three-dimensional exact electric-elastic analysis of a multilayered two-dimensional decagonal quasicrystal plate subjected to patch loading. Compos. Struct. 171, 198–216 (2017)

    Article  Google Scholar 

  32. Li, Y., Yang, L.Z., Zhang, L.L., Gao, Y.: Static response of functionally graded multilayered one-dimensional quasicrystal cylindrical shells. Math. Mech. Solids 24(3), 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Huang, Y.Z., Li, Y., Zhang, L.L., Zhang, H., Gao, Y.: Three-dimensional static analysis of multilayered one-dimensional orthorhombic quasicrystal spherical shells with the piezoelectric effect. Phys. Lett. A 383(29), 125902 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Waksmanski, N., Pan, E., Yang, L.Z., Yang, G.: Free vibration of a multilayered one-dimensional quasi-crystal plate. J. Vib. Acoust. 136(4), 041019 (2014)

    Article  Google Scholar 

  35. Huang, Y.Z., Li, Y., Zhang, L.L., Zhang, H., Gao, Y.: Dynamic analysis of a multilayered piezoelectric two-dimensional quasicrystal cylindrical shell filled with compressible fluid using the state-space approach. Acta Mech. 231(6) (2020)

  36. Inoue, A., Takeuchi, A.: Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Mat. Sci. Eng. A Struct. 375–377(1–2), 16–30 (2004)

    Article  Google Scholar 

  37. Fournee, V., Sharma, H.R., Shimoda, M., Tsai, A.P., Unal, B., Ross, A.R., Lograsso, T.A., Thiel, P.A.: Quantum size effects in metal thin films grown on quasicrystalline substrates. Phys. Rev. Lett. 95(15), 155504 (2005)

    Article  Google Scholar 

  38. Lefaix, H., Prima, F., Zanna, S., Vermaut, P., Dubot, P., Marcus, P., Janickovic, D., Svec, P.: Surface properties of a nano-quasicrystalline forming Ti based system. Mater. Trans. 48(3), 278–286 (2007)

    Article  Google Scholar 

  39. Zhang, J., Pei, L., Du, H., Liang, W., Xu, C., Lu, B.: Effect of Mg based spherical quasicrystals on microstructure and mechanical properties of AZ91 alloys. J. Alloy. Compd. 453(1–2), 309–315 (2008)

    Article  Google Scholar 

  40. Wang, Z., Zhao, W., Qin, C., Cui, Y., Fan, S., Jia, J.: Direct preparation of nano-quasicrystals via a water-cooled wedge-shaped copper mould. J. Nanomater. 1(1687–4110), 208–212 (2012)

    Google Scholar 

  41. Inoue, A., Kong, F.L., Zhu, S.L., Liu, C.T., Al-Marzouki, F.: Development and applications of highly functional Al-based materials by use of metastable phases. Mater. Res. 18(6), 1414–1425 (2015)

    Article  Google Scholar 

  42. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    Article  MATH  Google Scholar 

  43. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  44. Yamaguchi, M.: Distributed electrostatic micro actuator. Micro. Electro. Mech. Syst. 18–23 (1993)

  45. Brevik, I., Ellingsen, S.A., Milton, K.A.: Thermal corrections to the Casimir effect. New J. Phys. 8(10), 236 (2006)

    Article  Google Scholar 

  46. Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V., Sahmani, S.: Surface stress effect on the pull-in instability of circular nanoplates. Acta Astronaut. 102(102), 140–150 (2014)

    Article  Google Scholar 

  47. Yang, W.D., Yang, F.P., Wang, X.: Dynamic instability and bifurcation of electrically actuated circular nanoplate considering surface behavior and small scale effect. Int. J. Mech. Sci. 126, 12–23 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would deeply appreciate the support from the National Natural Sciences Foundation of China (Grant Nos. U2067220, 51779139, and 82000980).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miaolin Feng or Xiuhua Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Feng, M. & Chen, X. Pull-in instability and vibration of quasicrystal circular nanoplate actuator based on surface effect and nonlocal elastic theory. Arch Appl Mech 92, 853–866 (2022). https://doi.org/10.1007/s00419-021-02077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02077-y

Keywords

Navigation