Skip to main content
Log in

Scattering of SH waves by orthotropic lining groups in half space

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

As an important underground structure, reinforced concrete lining tunnel is widely used in transportation and urban underground drainage. Reinforced concrete has orthogonal anisotropy. Therefore, the wave equation of SH wave in orthotropic lining in cylindrical coordinate system is studied. In this paper, the expression of standing wave in lining is given based on the separated variable method, and the expression of the scattering wave of the lining in the homogeneous half space is given by using the mirror image method. The unknown coefficients in the wave field expression are determined according to the boundary conditions. Finally, a numerical example is given to analyze the scattering of SH waves by a pair of identical orthotropic subsurface lining, the influence of incident angle and wave number of SH waves, lining thickness, spacing between two lining and two shear modulus ratio parameters on dynamic stress concentration factor and surface displacement amplitude of lining and its adjacent surface are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tsaur, D., Hsu, M.: SH waves scattering from a partially filled semi-elliptic alluvial valley. Geophys. J. Int. 194(1), 499–511 (2013)

    Article  Google Scholar 

  2. Tsaur, D., Chang, K.: SH-waves scattering from a partially filled semi-circular alluvial valley. Geophys. J. Int. 173(1), 157–167 (2008)

    Article  Google Scholar 

  3. Yang, Z., Xu, H., Hei, B., Zhang, J.: Antiplane response of two scalene triangular hills and a semi-cylindrical canyon by incident SH-waves. Earthq. Eng. Eng. Vibr. 13(4), 569–581 (2014)

    Article  Google Scholar 

  4. Zhang, C., Liu, Q., Deng, P.: Antiplane scattering of SH waves by a trapezoidal valley with a circular-arc alluvium in an elastic half space. J. Earthq. Tsunami 09(03), 1550008 (2015)

    Article  Google Scholar 

  5. Zhang, N., Gao, Y., Pak, R.Y.S.: Soil and topographic effects on ground motion of a surficially inhomogeneous semi-cylindrical canyon under oblique incident SH waves. Soil Dyn. Earthq. Eng. 95, 17–28 (2017)

    Article  Google Scholar 

  6. Sohrabibidar, A., Kamalian, M.: Effects of three-dimensionality on seismic response of Gaussian-shaped hills for simple incident pulses. Soil Dyn. Earthq. Eng. 52, 1–12 (2013)

    Article  Google Scholar 

  7. Ba, Z., Liang, J., Mei, X.: 3D scattering of obliquely incident plane SV waves by an alluvial valley embedded in a fluid-saturated, poroelastic layered half-space. Earthq. Sci. 26(2), 107–116 (2013)

    Article  Google Scholar 

  8. Alielahi, H., Kamalian, M., Adampira, M.: A BEM investigation on the influence of underground cavities on the seismic response of canyons. Acta Geotech. 11(2), 391–413 (2016)

    Article  Google Scholar 

  9. Ducellier, A., Aochi, H.: Interactions between topographic irregularities and seismic ground motion investigated using a hybrid FD-FE method. Bull. Earthq. Eng. 10(3), 773–792 (2012)

    Article  Google Scholar 

  10. Zhu, C., Thambiratnam, D.P.: Interaction of geometry and mechanical property of trapezoidal sedimentary basins with incident SH waves. Bull. Earthq. Eng. 14(11), 2977–3002 (2016)

    Article  Google Scholar 

  11. Chen, J., Chen, P., Chen, C.: Surface motion of multiple alluvial valleys for incident plane SH-waves by using a semi-analytical approach. Soil Dyn. Earthq. Eng. 28(1), 58–72 (2008)

    Article  Google Scholar 

  12. Chen, J., Lee, J., Shyu, W.: SH-wave scattering by a semi-elliptical hill using a null-field boundary integral equation method and a hybrid method. Geophys. J. Int. 188(1), 177–194 (2012)

    Article  Google Scholar 

  13. Liu, G., Chen, H., Liu, D., Khoo, B.C.: Surface motion of a half-space with triangular and semicircular hills under incident SH waves. B Seismol. Soc. Am. 100(3), 1306–1319 (2010)

    Article  Google Scholar 

  14. Shyu, W., Teng, T., Chou, C.: Anti-plane response induced by an irregular alluvial valley using a hybrid method with modified transfinite interpolation. Soil Dyn. Earthq. Eng. 90, 250–264 (2016)

    Article  Google Scholar 

  15. Shyu, W.S., Teng, T.J.: Hybrid method combines transfinite interpolation with series expansion to simulate the anti-plane response of a surface irregularity. J. Mech. 30(04), 349–360 (2014)

    Article  Google Scholar 

  16. Hashash, Y.M.A., Hook, J.J., Schmidt, B., Yao, I.C.: Seismic design and analysis of underground structures. Tunn. Undergr. Space Technol. 16(4), 247–293 (2001)

    Article  Google Scholar 

  17. Henrych, J., Abrahamson, G.R.: The Dynamics of Explosion and Its Use, p. 218. Elsevier Scientific Pub. Co. (1979)

    Google Scholar 

  18. Hamhaber, U., Grieshaber, F.A., Nagel, J.H., Klose, U.: Comparison of quantitative shear wave MR-elastography with mechanical compression tests. Magn. Reson. Med. 49(1), 71–77 (2003)

    Article  Google Scholar 

  19. Bayly, P.V., Massouros, P.G., Christoforou, E., Sabet, A., Genin, G.M.: Magnetic resonance measurement of transient shear wave propagation in a viscoelastic gel cylinder. J. Mech. Phys. Solids 56(5), 2036 (2008)

    Article  Google Scholar 

  20. Pao, Y.H., Mow, C.C., Achenbach, J.D.: Diffraction of elastic waves and dynamic stress concentrations. J. Appl. Mech. 40(4), 213–219 (1973)

    Article  Google Scholar 

  21. Liu, D., Gai, B., Tao, G.: Applications of the method of complex function to dynamic stress concentration. Wave Motion 4(3), 293–304 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Balendra, T., Thambiratnam, D.P., Chan, G.K., Lee, S.L.: Dynamic response of twin circular tunnels due to incident SH-waves. Earthq. Eng. Struct. Dyn. 12(2), 181–201 (1984)

    Article  Google Scholar 

  23. Lee, V.W., Trifunac, M.D.: Response of tunnels to incident SH waves. J. Eng. Mech. 105(4), 643–659 (1979)

    Google Scholar 

  24. Li, Y.S., Li, T.B., Zhang, X.: Response of shallow-buried circular lining tunnel to incident P wave. Appl. Mech. Mat. 160, 331–336 (2012)

    Article  Google Scholar 

  25. Xu, H., Li, T., Xu, J., Wang, Y.: Dynamic response of underground circular lining tunnels subjected to incident P waves. Math. Probl. Eng. 2014(4), 1–11 (2014)

    MathSciNet  Google Scholar 

  26. Kara, H.F.: A note on response of tunnels to incident SH-waves near hillsides. Soil Dyn. Earthq. Eng. 90, 138–146 (2016)

    Article  Google Scholar 

  27. Amornwongpaibun, A., Luo, H., Lee, V.W.: Scattering of anti-plane (SH) waves by a shallow semi-elliptical hill with a concentric elliptical tunnel. J. Earthq. Eng. 20(3), 363–382 (2015)

    Article  Google Scholar 

  28. Liu, Q., Wang, R.: Dynamic response of twin closely-spaced circular tunnels to harmonic plane waves in a full space. Tunn. Undergr. Space Technol. 32(6), 212–220 (2012)

    Article  Google Scholar 

  29. Hei, B., Yang, Z., Wang, Y., Liu, D.: Dynamic analysis of elastic waves by an arbitrary cavity in an inhomogeneous medium with density variation. Math. Mech. Solids 21(8), 931–940 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, Z., Hei, B., Wang, Y.: Scattering by circular cavity in radially inhomogeneous medium with wave velocity variation. Appl. Math. Mech. 6(5), 599–608 (2015)

    Article  Google Scholar 

  31. Han, F., Liu, D.: Scattering of plane SH-waves on semi-canyon topography of arbitrary shape with linging in anisotropic media. Appl. Math. Mech. 8(8), 807–816 (1997)

    MATH  Google Scholar 

  32. Fang, X.Q., Zhang, T.F., Li, H.Y.: Elastic-slip interface effect on dynamic response of a lined tunnel in a semi-infinite alluvial valley under SH waves. Tunn. Undergr. Space Technol. 74, 96–106 (2018)

    Article  Google Scholar 

  33. Hasheminejad, S.M., Kazemirad, S.: Dynamic response of an eccentrically lined circular tunnel in poroelastic soil under seismic excitation. Soil Dyn. Earthq. Eng. 28(4), 277–292 (2008)

    Article  Google Scholar 

  34. Hasheminejad, S.M., Miri, A.K.: Seismic isolation effect of lined circular tunnels with damping treatments. Earthq. Eng. Eng. Vibr. 7(3), 305–319 (2008)

    Article  Google Scholar 

  35. Hasheminejad, S.M., Avazmohammadi, R.: Dynamic stress concentrations in lined twin tunnels within fluid-saturated soil. J. Eng. Mech. 134(7), 542–554 (2008)

    Google Scholar 

  36. Liao, W.I., Yeh, C.-S., Teng, T.-J.: Scattering of elastic waves by a buried tunnel under obliquely incident waves using T matrix. J. Mech. 24(4), 405–418 (2008)

    Article  Google Scholar 

  37. Zhou, X.L., Wang, J.H., Jiang, L.F.: Dynamic response of a pair of elliptic tunnels embedded in a poroelastic medium. J. Sound Vibr. 325(4), 816–834 (2009)

    Article  Google Scholar 

  38. Fang, X.Q., Yang, S.P., Liu, J.X., Feng, W.J.: Dynamic interaction between two fluid-filled circular pipelines in saturated poroelastic medium subjected to harmonic waves. J. Press. Vessel Technol. 137(1), 011305 (2015)

    Article  Google Scholar 

  39. Wang, Y., Gao, G.Y., Yang, J., Bai, X.Y.: Transient dynamic response of a shallow buried lined tunnel in saturated soil. Soil Dyn. Earthq. Eng. 94, 13–17 (2017)

    Article  Google Scholar 

  40. Esmaeili, M., Vahdani, S., Noorzad, A.: Dynamic response of lined circular tunnel to plane harmonic waves. Tunn. Undergr. Space Technol. 21(5), 511–519 (2005)

    Article  Google Scholar 

  41. Manolis, G.D., Parvanova, S.L., Makra, K., Dineva, P.S.: Seismic response of buried metro tunnels by a hybrid FDM-BEM approach. Bull. Earthq. Eng. 13(7), 1953–1977 (2015)

    Article  Google Scholar 

  42. Lin, K.C., Hung, H.H., Yang, J.P., Yang, Y.B.: Seismic analysis of underground tunnels by the 2.5D finite/infinite element approach. Soil Dyn. Earthq. Eng. 85, 31–43 (2016)

    Article  Google Scholar 

  43. Panji, M., Ansari, B.: Transient SH-wave scattering by the lined tunnels embedded in an elastic half-plane. Eng. Anal. Bound. Elem. 84, 220–230 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Huang, J., Zhao, M., Du, X.: Non-linear seismic responses of tunnels within normal fault ground under obliquely incident P waves. Tunn. Undergr. Space Technol. 61, 26–39 (2017)

    Article  Google Scholar 

  45. Vosoughifar, H., Madadi, F., Rabiefar, A.: Modified dynamic stress concentration factor for twin tunnels using a novel approach of FEM-scattering. Tunn. Undergr. Space Technol. 70, 30–41 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 12072085); the Opening Fund of Acoustics Science and Technology Laboratory (Grant No. SSKF2020011); the Fundamental Research Funds for the Central Universities (No. 3072021CF0206); the “Young Talents” Project of Northeast Agricultural University (17QC12) and the Research Team Project of Heilongjiang Natural Science Foundation (Grant No.TD2020A001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Yang or Hong-yu Deng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Yang, Zl., Yang, Y. et al. Scattering of SH waves by orthotropic lining groups in half space. Arch Appl Mech 92, 691–712 (2022). https://doi.org/10.1007/s00419-021-02067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02067-0

Keywords

Navigation