Skip to main content

Advertisement

Log in

Joint finite size influence and frictional influence on the contact behavior of thermoelectric strip

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The severe electric and thermal environments may cause localized deterioration of the contact behavior of thermoelectric devices. The contact responses of the thermoelectricity under the joint effect of the finite size and the friction are analyzed. The law of the Coulomb friction is adopted. The obtained Fredholm kernel functions reveal the influence of the thickness and the friction. The known Jacobi polynomials are employed to discretize the obtained singular integral equation. The effects of the thermoelectric loadings (the total electric current and the total energy flux), friction coefficient, the thermoelectric strip thickness, and the elastic and thermoelectric material constants on the distribution of the normal traction and the surface in-plane stress are demonstrated in detail. The smaller thermal expansion coefficient and shear modulus will contribute to the lower stress concentration at both contact edges. The surface in-plane tensile stress behind the trailing edge can be alleviated as the thermoelectric strip becomes thinner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Disalvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703–706 (1999)

    Article  Google Scholar 

  2. Nozariasbmarz, A., Collins, H., Dsouza, K., Polash, M.H., Hosseini, M., Hyland, M., Liu, J., Malhotra, A., Ortiz, F.M., Mohaddes, F., Ramesh, V.P., Sargolzaeiaval, Y., Snouwaert, N., Özturk, M.C., Vashaee, D.: Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems. Appl. Energy. 258, 114069 (2020)

    Article  Google Scholar 

  3. Li, K., Chen, L., Zhu, F., Huang, Y.: Thermal and mechanical analyses of compliant thermoelectric coils for flexible and bio-integrated devices. J. Appl. Mech. Trans. ASME. 88, 1–7 (2021)

    Article  Google Scholar 

  4. Guclu, T., Cuce, E.: Thermoelectric coolers (TECs): from theory to practice. J. Electron. Mater. 48, 211–230 (2019)

    Article  Google Scholar 

  5. Hirshikesh, P.A.L.N., Ooi, E.T., Song, C., Natarajan, S.: An adaptive scaled boundary finite element method for contact analysis. Eur. J. Mech. A/Solids. 86, 104180 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andresen, H., Hills, D.A., Moore, M.R.: Representation of incomplete contact problems by half-planes. Eur. J. Mech. A/Solids. 85, 104138 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lopes, J.P., Hills, D.A.: An idealised description of the frictional receding contact behaviour of a bolted joint. Eur. J. Mech. A/Solids. 83, 104022 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  9. Zhou, Y.T., Lee, K.Y.: Exact solutions of the 2-D frictional sliding contact problem of electrically insulated triangular and cylindrical punches on piezoelectric materials. ZAMM Zeitschrift fur Angew. Math. und Mech. 93, 217–232 (2013).

  10. Zhou, Y.T., Pang, S.J., Zhong, Z.: Tribological behavior of a flat or circular stamp sliding on piezoelectric/piezomagnetic composites. Int. J. Appl. Mech. 9, 1–29 (2017)

    Article  Google Scholar 

  11. Çömez, İ: Frictional moving contact problem of a magneto- electro- elastic half plane. Mech. Mater. 154, 103704 (2021)

    Article  Google Scholar 

  12. Choi, H.J., Paulino, G.H.: Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system with frictional heat generation. J. Mech. Phys. Solids. 56, 1673–1692 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Balci, M.N., Dag, S.: Mechanics of dynamic contact of coated substrate and rigid cylindrical ended punch. J. Mech. Sci. Technol. 33, 2225–2240 (2019)

    Article  Google Scholar 

  14. Guler, M.A., Erdogan, F.: The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings. Int. J. Mech. Sci. 49, 161–182 (2007)

    Article  Google Scholar 

  15. Liu, J., Ke, L.L., Wang, Y.S., Yang, J., Alam, F.: Thermoelastic frictional contact of functionally graded materials with arbitrarily varying properties. Int. J. Mech. Sci. 63, 86–98 (2012)

    Article  Google Scholar 

  16. Çömez, İ: Contact mechanics of the functionally graded monoclinic layer. Eur. J. Mech. A/Solids. 83, 104018 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Çömez, İ.: Frictional moving contact problem between a conducting rigid cylindrical punch and a functionally graded piezoelectric layered half plane. Meccanica (2021).

  18. Liu, J., Ke, L., Zhang, C.: Axisymmetric thermoelastic contact of an FGM-coated half-space under a rotating punch. Acta Mech. 232, 2361–2378 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. El-Borgi, S., Çömez, I., Ali Güler, M.: A receding contact problem between a graded piezoelectric layer and a piezoelectric substrate. Arch. Appl. Mech. (2021).

  20. Arslan, O.: Plane contact problem between a rigid punch and a bidirectional functionally graded medium. Eur. J. Mech. A/Solids. 80, 103925 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Arslan, O.: Hertz-type frictional contact problem of a bidirectionally graded half-plane indented by a sliding rounded punch. Mech. Mater. 149, 103539 (2020)

    Article  Google Scholar 

  22. Balci, M.N.: Implementation of Dahl’s dynamic friction model to contact mechanics of elastic solids. SN Appl. Sci. 3, 1–17 (2021)

    Article  Google Scholar 

  23. Çömez, İ: An effective method for the frictional thermoelastic contact of a cylindrical punch on a piezoelectric layer. J. Therm. Stress. 44, 1030–1051 (2021)

    Article  Google Scholar 

  24. Chen, P., Chen, S.: Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. Int. J. Solids Struct. 50, 1108–1119 (2013)

    Article  Google Scholar 

  25. Balci, M.N.: The effect of punch speed on frictional contact mechanics of finite-thickness graded layer resting on the rigid foundation. J. Brazilian Soc. Mech. Sci. Eng. 42, 343 (2020)

    Article  Google Scholar 

  26. Alinia, Y., Asiaee, A., Hosseini-nasab, M.: Stress analysis in rolling contact problem of a finite thickness FGM layer. Meccanica 54, 183–203 (2019)

    Article  MathSciNet  Google Scholar 

  27. Parel, K.S.: Plane frictional receding contact of a thin layer pressed onto a substrate by finite pressure distributions. Eur. J. Mech. A/Solids. 90, 104309 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, Y.T., Zhang, C., Zhong, Z., Wang, L.: Transient thermo-electro-elastic contact analysis of a sliding punch acting on a functionally graded piezoelectric strip under non-Fourier heat conduction. Eur. J. Mech. A/Solids. 73, 90–100 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Arslan, O.: Solution of the plane contact problem between a finite-thickness laterally graded solid and a rigid stamp of an arbitrary tip-profile. Arch. Mech. 71, 531–565 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Yilmaz, K.B., Comez, I., Güler, M.A., Yildirim, B.: The effect of orthotropic material gradation on the plane sliding frictional contact mechanics problem. J. Strain Anal. Eng. Des. 54, 254–275 (2019)

    Article  Google Scholar 

  31. Eltaher, M.A., Attia, M.A., Wagih, A.: Predictive model for indentation of elasto-plastic functionally graded composites. Compos. B Eng. 197, 108129 (2020)

    Article  Google Scholar 

  32. Choi, S.T., Mai, N.T., Nguyen, V.P.: Dislocation nucleation and segregation under adhesive contact of a nano-asperity coating on a crystalline solid. Eur. J. Mech. A/Solids. 89, 104311 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, W., Bai, S.: Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module. J. Mater. 5, 321–336 (2019)

    Google Scholar 

  34. Liu, W., Jie, Q., Kim, H.S., Ren, Z.: Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater. 87, 357–376 (2015)

    Article  Google Scholar 

  35. Zhou, Y.T., Tian, X.J., Li, F.J.: On coupling contact analysis of thermoelectric materials. Appl. Math. Model. 89, 1459–1474 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tian, X.J., Zhou, Y.T., Guan, X.F., Wang, L.H., Ding, S.H.: The frictional contact problem of a rigid punch sliding over thermoelectric materials. Int. J. Solids Struct. 200–201, 145–157 (2020)

    Article  Google Scholar 

  37. Tian, X.J., Zhou, Y.T., Wang, L.H., Ding, S.H.: Surface contact behavior of functionally graded thermoelectric materials indented by a conducting punch. Appl. Math. Mech. English Ed. 42, 649–664 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, J.E., Wang, B.L., Zhang, C.: Thermal and electrical electrode/punch problem of thermoelectric materials. Int. J. Heat Mass Transf. 143, (2019).

  39. Li, X., Tian, X.J., Zhou, Y.T.: Thickness size effect on contact behavior of a thermoelectric strip. Acta Mech. 232, 3305–3321 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Muthiah, S., Singh, R.C., Pathak, B.D., Dhar, A.: Mechanical properties of thermoelectric n-type magnesium silicide synthesized employing in situ spark plasma reaction sintering. Mater. Res. Express. 4, (2017).

  41. Çömez, İ: Frictional moving contact problem of an orthotropic layer indented by a rigid cylindrical punch. Mech. Mater. 133, 120–127 (2019)

    Article  Google Scholar 

  42. Guler, M.A.: Closed-form solution of the two-dimensional sliding frictional contact problem for an orthotropic medium. Int. J. Mech. Sci. 87, 72–88 (2014)

    Article  Google Scholar 

  43. Zhou, Y.T., Lee, K.Y., Jang, Y.H.: Influences of the moving velocity and material property on frictionless contact problem of orthotropic materials indented by a moving punch. Arch. Mech. 65, 195–217 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Lin, Y., Ovaert, T.C.: Thermal distortion of an anisotropic elastic half-plane and its application in contact problems including frictional heating. J. Tribol. 128, 32–39 (2006)

    Article  Google Scholar 

  45. Zhou, Y.T., Lee, K.Y.: Exact solutions of a new, 2D frictionless contact model for orthotropic piezoelectric materials indented by a rigid sliding punch. Philos. Mag. 92, 1937–1965 (2012)

    Article  Google Scholar 

  46. Liu, L.: A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites. Int. J. Eng. Sci. 55, 35–53 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhou, Y.T., Kim, T.W.: Two electrically-conducting stamps on the surface of piezoelectric materials. Int. J. Eng. Sci. 81, 146–162 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kolbig, K.S., Gradshteyn, I.S., Ryzhik, I.M., Jeffrey, A., Scripta Technica, I.: Table of Integrals, Series, and Products. Elsevier, Amsterdam (1995)

    Google Scholar 

  49. Zhou, Y.T., Lee, K.Y.: Thermo-electro-mechanical contact behavior of a finite piezoelectric layer under a sliding punch with frictional heat generation. J. Mech. Phys. Solids. 59, 1037–1061 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11832014, 11972257, and 11472193), the China Scholarship Council (CSC), and the Fundamental Research Funds for the Central Universities (22120180223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. T. Zhou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Expressions of \(\tilde{u}_{i} \left( {s,y} \right),\;\tilde{w}_{i} \left( {s,y} \right),\left( {i = 1,2} \right)\) in Eq. (10).

The general solutions of Eq. (4) can be expressed as follows:

$$\begin{aligned} \tilde{u}_{1} \left( {s,y} \right) = & e^{ - \left| s \right|y} \left[ {C_{1} \left( s \right) + C_{2} \left( s \right)y} \right] + e^{\left| s \right|y} \left[ {C_{3} \left( s \right) + C_{4} \left( s \right)y} \right] \\ \tilde{w}_{1} \left( {s,y} \right) = & - \frac{is}{{\left| s \right|}}\left\{ {e^{ - \left| s \right|y} \left[ {C_{1} \left( s \right) + C_{2} \left( s \right)\left( {y + \frac{\kappa }{\left| s \right|}} \right)} \right] - e^{\left| s \right|y} \left[ {C_{3} \left( s \right) + C_{4} \left( s \right)\left( {y - \frac{\kappa }{\left| s \right|}} \right)} \right]} \right\} \\ \end{aligned}$$
(A.1)

, where \(C_{1} \left( s \right)\), \(C_{2} \left( s \right)\), \(C_{3} \left( s \right)\), and \(C_{4} \left( s \right)\) are to be determined.

The particulars solutions of displacement fields can be given as follows:

$$\begin{aligned} \tilde{u}_{2} \left( {s,y} \right) = & \frac{{i\beta^{ * } }}{{\pi \lambda \gamma \left( {\kappa - 1} \right)}}\int\limits_{ - \infty }^{\infty } \Big[ A_{11} \left( {s - \xi } \right)A_{11} \left( \xi \right)\frac{{{\rm Z}_{1} }}{{\Pi_{1} }}e^{{\eta_{1} y}} + A_{12} \left( {s - \xi } \right)A_{12} \left( \xi \right)\frac{{{\rm Z}_{2} }}{{\Pi_{2} }}e^{{\eta_{2} y}}\\& + A_{11} \left( {s - \xi } \right)A_{12} \left( \xi \right)\frac{{{\rm Z}_{3} }}{{\Pi_{3} }}e^{{\eta_{3} y}} + A_{12} \left( {s - \xi } \right)A_{11} \left( \xi \right)\frac{{{\rm Z}_{4} }}{{\Pi_{4} }}e^{{\eta_{4} y}} \Big] {\text{d}}\xi \\ & \;\; - \frac{{2i\beta^{ * } }}{{\lambda \left( {\kappa + 1} \right)}}y\frac{\left| s \right|}{s}\left[ {A_{21} \left( s \right)e^{\left| s \right|y} - A_{22} \left( s \right)e^{ - \left| s \right|y} } \right] \\ \tilde{w}_{2} \left( {s,y} \right) = & \frac{{ - \beta^{ * } }}{{\pi \lambda \gamma \left( {\kappa - 1} \right)}}\int\limits_{ - \infty }^{\infty } \Big[ A_{11} \left( {s - \xi } \right)A_{11} \left( \xi \right)\frac{{\Psi_{1} }}{{\Pi_{1} }}e^{{\eta_{1} y}} + A_{12} \left( {s - \xi } \right)A_{12} \left( \xi \right)\frac{{\Psi_{2} }}{{\Pi_{2} }}e^{{\eta_{2} y}}\\ & + A_{11} \left( {s - \xi } \right)A_{12} \left( \xi \right)\frac{{\Psi_{3} }}{{\Pi_{3} }}e^{{\eta_{3} y}} + A_{12} \left( {s - \xi } \right)A_{11} \left( \xi \right)\frac{{\Psi_{4} }}{{\Pi_{4} }}e^{{\eta_{4} y}} \Big] {\text{d}}\xi \\ & \;\; + \frac{{2\beta^{ * } }}{{\lambda \left( {\kappa + 1} \right)}}\left[ {A_{21} \left( s \right)\left( {y + \frac{1}{\left| s \right|}} \right)e^{\left| s \right|y} + A_{22} \left( s \right)\left( {y - \frac{1}{\left| s \right|}} \right)e^{ - \left| s \right|y} } \right] \\ \end{aligned}$$
(A.2)

, where \({\rm Z}_{j}\), \(\Psi_{j}\) and \(\Pi_{j}\) (\(j = 1,2,3,4\)) have the following forms

$${\rm Z}_{j} = - s^{3} + s\eta_{j}^{2} ,\;\;\Psi_{j} = \eta_{j}^{3} - s^{2} \eta_{j} ,\;\;\Pi_{j} = \frac{\kappa + 1}{{\kappa - 1}}\left( {s^{2} - \eta_{j}^{2} } \right)^{2}$$
(A.3)

Appendix B

Expressions of \(b_{ij} (i = 1,2;j = 1,2,3,4,5,6)\) and \(a_{ij} (i = 1,2;j = 1,2,3,4)\) appearing in Eqs. (17) and (18).

$$\begin{gathered} b_{11} \left( {\eta_{1} ,s} \right) = \frac{{\beta^{ * } \left[ {2Gs^{2} a_{11} - is\left( {1 + 2Ga_{12} \eta_{1} + a_{13} e^{{h\eta_{1} }} } \right) + a_{14} \eta_{1} e^{{h\eta_{1} }} } \right]}}{{\pi \lambda \gamma \left( {\kappa + 1} \right)\left( {s^{2} - \eta_{1}^{2} } \right)}} \hfill \\ b_{12} \left( {\eta_{2} ,s} \right) = \frac{{\beta^{ * } \left[ {2Gs^{2} a_{11} - is\left( {1 + 2Ga_{12} \eta_{2} + a_{13} e^{{h\eta_{2} }} } \right) + a_{14} \eta_{2} e^{{h\eta_{2} }} } \right]}}{{\pi \lambda \gamma \left( {\kappa + 1} \right)\left( {s^{2} - \eta_{2}^{2} } \right)}} \hfill \\ b_{13} \left( {\eta_{3} ,s} \right) = \frac{{\beta^{ * } \left[ {2Gs^{2} a_{11} - is\left( {1 + 2Ga_{12} \eta_{3} + a_{13} e^{{h\eta_{3} }} } \right) + a_{14} \eta_{3} e^{{h\eta_{3} }} } \right]}}{{\pi \lambda \gamma \left( {\kappa + 1} \right)\left( {s^{2} - \eta_{3}^{2} } \right)}} \hfill \\ b_{14} \left( {\eta_{4} ,s} \right) = \frac{{\beta^{ * } \left[ {2Gs^{2} a_{11} - is\left( {1 + 2Ga_{12} \eta_{4} + a_{13} e^{{h\eta_{4} }} } \right) + a_{14} \eta_{4} e^{{h\eta_{4} }} } \right]}}{{\pi \lambda \gamma \left( {\kappa + 1} \right)\left( {s^{2} - \eta_{4}^{2} } \right)}} \hfill \\ b_{15} \left( s \right) = \frac{{2\beta^{ * } \left[ { - 2iGsa_{12} - isha_{13} e^{h\left| s \right|} + a_{14} e^{h\left| s \right|} + h\left| s \right|a_{14} e^{h\left| s \right|} } \right]}}{{\lambda \left( {\kappa + 1} \right)\left| s \right|}} \hfill \\ b_{16} \left( s \right) = \frac{{2\beta^{ * } \left[ {2iGsa_{12} + isha_{13} e^{ - h\left| s \right|} - a_{14} e^{ - h\left| s \right|} + h\left| s \right|a_{14} e^{ - h\left| s \right|} } \right]}}{{\lambda \left( {\kappa + 1} \right)\left| s \right|}} \hfill \\ \end{gathered}$$
(B.1)
$$\begin{gathered} b_{21} \left( {\eta_{1} ,s} \right) = \frac{{\beta^{ * } \left[ {\eta_{1} + 2Gs^{2} a_{21} - 2iGsa_{22} \eta_{1} - isa_{23} e^{{h\eta_{1} }} + a_{24} \eta_{1} e^{{h\eta_{1} }} } \right]}}{{\pi \lambda \gamma \left( {\kappa + 1} \right)\left( {s^{2} - \eta_{1}^{2} } \right)}} \hfill \\ b_{22} \left( {\eta_{2} ,s} \right) = \frac{{\beta^{ * } \left[ {\eta_{2} + 2Gs^{2} a_{21} - 2iGsa_{22} \eta_{2} - isa_{23} e^{{h\eta_{2} }} + a_{24} \eta_{2} e^{{h\eta_{2} }} } \right]}}{{\pi \lambda \gamma \left( {\kappa + 1} \right)\left( {s^{2} - \eta_{2}^{2} } \right)}} \hfill \\ b_{23} \left( {\eta_{3} ,s} \right) = \frac{{\beta^{ * } \left[ {\eta_{3} + 2Gs^{2} a_{21} - 2iGsa_{22} \eta_{3} - isa_{23} e^{{h\eta_{3} }} + a_{24} \eta_{3} e^{{h\eta_{3} }} } \right]}}{{\pi \lambda \gamma \left( {\kappa + 1} \right)\left( {s^{2} - \eta_{3}^{2} } \right)}} \hfill \\ b_{24} \left( {\eta_{3} ,s} \right) = \frac{{\beta^{ * } \left[ {\eta_{4} + 2Gs^{2} a_{21} - 2iGsa_{22} \eta_{4} - isa_{23} e^{{h\eta_{4} }} + a_{24} \eta_{4} e^{{h\eta_{4} }} } \right]}}{{\pi \lambda \gamma \left( {\kappa + 1} \right)\left( {s^{2} - \eta_{4}^{2} } \right)}} \hfill \\ b_{25} \left( s \right) = \frac{{2\beta^{ * } \left[ {1 - 2iGsa_{22} - isha_{23} e^{h\left| s \right|} + a_{24} e^{h\left| s \right|} + h\left| s \right|a_{24} e^{h\left| s \right|} } \right]}}{{\lambda \left( {\kappa + 1} \right)\left| s \right|}} \hfill \\ b_{26} \left( s \right) = \frac{{2\beta^{ * } \left[ { - 1 + 2iGsa_{22} + isha_{23} e^{ - h\left| s \right|} - a_{24} e^{ - h\left| s \right|} + h\left| s \right|a_{24} e^{ - h\left| s \right|} } \right]}}{{\lambda \left( {\kappa + 1} \right)\left| s \right|}} \hfill \\ \end{gathered}$$
(B.2)

The expressions \(a_{ij} (i = 1,2;j = 1,2,3,4)\) in Eqs. (B.1) and (B.2) can be written as

$$\begin{gathered} a_{11} = - i\frac{{\left[ {\left( { - 1 + e^{2\left| s \right|h} } \right)^{2} \left( { - 1 + \kappa } \right)\kappa - 8h^{2} s^{2} e^{2\left| s \right|h} } \right]}}{4Gs\Lambda } \hfill \\ a_{12} = \frac{{\left( {\kappa + 1} \right)\left[ {\kappa \left( {e^{4\left| s \right|h} - 1} \right) + 4h\left| s \right|e^{2\left| s \right|h} } \right]}}{4G\left| s \right|\Lambda } \hfill \\ a_{13} = - \frac{{\left( {\kappa + 1} \right)e^{\left| s \right|h} \left[ {\left( {\kappa + 1} \right)\left( {e^{2\left| s \right|h} + 1} \right) - 2h\left| s \right|\left( {e^{2\left| s \right|h} - 1} \right)} \right]}}{2\Lambda } \hfill \\ a_{14} = i\frac{{\left( {\kappa + 1} \right)\left| s \right|e^{\left| s \right|h} \left[ {\left( { - 1 + \kappa } \right)\left( {e^{2\left| s \right|h} - 1} \right) + 2h\left| s \right|\left( {e^{2\left| s \right|h} + 1} \right)} \right]}}{2s\Lambda } \hfill \\ \end{gathered}$$
(B.3)
$$\begin{gathered} a_{21} = \frac{{\left( {\kappa + 1} \right)\left[ {\kappa \left( {e^{4\left| s \right|h} - 1} \right) - 4h\left| s \right|e^{2\left| s \right|h} } \right]}}{4G\left| s \right|\Lambda } \hfill \\ a_{22} = i\frac{{\left[ {\left( { - 1 + e^{2\left| s \right|h} } \right)^{2} \left( {\kappa^{2} - \kappa } \right) - 8h^{2} s^{2} e^{2\left| s \right|h} } \right]}}{4Gs\Lambda } \hfill \\ a_{23} = i\frac{{\left( {\kappa + 1} \right)\left| s \right|e^{\left| s \right|h} \left[ {\left( {1 - \kappa } \right)\left( {e^{2\left| s \right|h} - 1} \right) + 2h\left| s \right|\left( {e^{2\left| s \right|h} + 1} \right)} \right]}}{2s\Lambda } \hfill \\ a_{24} = - \frac{{\left( {\kappa + 1} \right)e^{\left| s \right|h} \left[ {\left( {\kappa + 1} \right)\left( {e^{2\left| s \right|h} + 1} \right) + 2h\left| s \right|\left( {e^{2\left| s \right|h} - 1} \right)} \right]}}{2\Lambda } \hfill \\ \end{gathered}$$
(B.4)

with \(\Lambda = 4h^{2} s^{2} e^{2\left| s \right|h} + e^{2\left| s \right|h} \left( {1 + \kappa^{2} } \right) + \kappa e^{4\left| s \right|h} + \kappa\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X.J., Zhou, Y.T., Li, F.J. et al. Joint finite size influence and frictional influence on the contact behavior of thermoelectric strip. Arch Appl Mech 93, 405–425 (2023). https://doi.org/10.1007/s00419-021-02061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02061-6

Keywords

Navigation