Skip to main content
Log in

Electromechanical fields in PN junctions with continuously graded doping in piezoelectric semiconductor rods

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We study PN junctions in a piezoelectric semiconductor rod with continuously graded doping. The macroscopic theory of piezoelectric semiconductor is used. The doping profile is describes by power series in a general manner. The resulting differential equation is also solved by power series. Electromechanical fields produced by doping described by the error function are calculated numerically as an example. Numerical results show the diffusion of carriers and the formation of PN junctions. The effective polarization charge, the built-in electric field and potential, and the strain and mechanical displacement are also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hickernell, F.S.: The piezoelectric semiconductor and acoustoelectronic device development in the sixties. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 737–745 (2018)

    Article  Google Scholar 

  2. Wang, Z.L., Wu, W.L., Falconi, C.: Piezotronics and piezophototronics with third generation semiconductors. MRS Bull. 43, 922–927 (2018)

    Article  Google Scholar 

  3. Zhang, Y., Leng, Y.S., Willatzen, M., Huang, B.: Theory of piezotronics and piezophototronics. MRS Bull. 43, 928–935 (2018)

    Article  Google Scholar 

  4. Hu, W.G., Kalantar-Zadeh, K., Gupta, K., Liu, C.P.: Piezotronic materials and large-scale piezotronics array devices. MRS Bull. 43, 936–940 (2018)

    Article  Google Scholar 

  5. Frömling, T., Yu, R., Mintken, M., Adelung, R., Rödel, J.: Piezotronic sensors. MRS Bull. 43, 941–945 (2018)

    Article  Google Scholar 

  6. Wang, X.D., Rohrer, G.S., Li, H.: Piezotronic modulations in electro- and photochemical catalysis. MRS Bull. 43, 946–951 (2018)

    Article  Google Scholar 

  7. Bao, R.R., Hu, Y.F., Yang, Q., Pan, C.F.: Piezophototronic effect on optoelectronic nanodevices. MRS Bull. 43, 952–958 (2018)

    Article  Google Scholar 

  8. Liu, Y.D., Wahyudin, E.T.N., He, J.H., Zhai, J.Y.: Piezotronics and piezophototronics in two-dimensional materials. MRS Bull. 43, 959–964 (2018)

    Article  Google Scholar 

  9. Hao, J.H., Xu, C.N.: Piezophotonics from fundamentals and materials to applications. MRS Bull. 43, 965–969 (2018)

    Article  Google Scholar 

  10. Wang, Z.L.: Piezotronics and Piezo-Phototronics. Science Press, Beijing (2012). (in Chinese)

    Book  Google Scholar 

  11. Lew Yan Voon, L.C., Willatzen, M.: Electromechanical phenomena in semiconductor nanostructures. J. Appl. Phys. 109, 031101 (2011)

    Article  Google Scholar 

  12. Wang, Z.L., Wu, W.Z.: Piezotronics and piezo-phototronics-fundamentals and applications. Nati. Sci. Rev. 1, 62–90 (2013)

    Article  Google Scholar 

  13. Liu, Y., Zhang, Y., Yang, Q., Niu, S.M., Wang, Z.L.: Fundamental theories of piezotronics and piezo-phototronics. Nano Energy 14, 257–275 (2015)

    Article  Google Scholar 

  14. Auld, B.A.: Acoustic Fields and Waves in Solids. Wiley, New York (1973)

    Google Scholar 

  15. Pierret, R.F.: Semiconductor Fundamentals, 2nd edn. Addison-Wesley, Reading (1988)

  16. Luo, Y.X., Zhang, C.L., Chen, W.Q., Yang, J.S.: An analysis of PN junctions in piezoelectric semiconductors. J. Appl. Phys. 122, 204502 (2017)

    Article  Google Scholar 

  17. Luo, Y.X., Cheng, R.R., Zhang, C.L., Chen, W.Q., Yang, J.S.: Electromechanical fields near a circular PN junction between two piezoelectric semiconductors. Acta Mech. Solida Sin. 31, 127–140 (2018)

    Article  Google Scholar 

  18. Guo, M.K., Li, Y., Qin, G.S., Zhao, M.H.: Nonlinear solutions of PN junctions of piezoelectric semiconductors. Acta Mech. 230, 1825–1841 (2019)

    Article  MathSciNet  Google Scholar 

  19. Yang, G.Y., Du, J.K., Wang, J., Yang, J.S.: Electromechanical fields in a nonuniform piezoelectric semiconductor rod. J. Mech. Mater. Struct. 13, 103–120 (2018)

    Article  MathSciNet  Google Scholar 

  20. Afraneo, R., Lovat, G., Burghignoli, P., Falconi, C.: Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Adv. Mater. 24, 4719–4724 (2012)

    Article  Google Scholar 

  21. Zhang, C.L., Wang, X.Y., Chen, W.Q., Yang, J.S.: An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Mater. Struct. 26, 025030s (2017)

    Article  Google Scholar 

  22. Zhang, C.L., Luo, Y.X., Cheng, R.R., Wang, X.Y.: Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force. MRS Adv. 2, 3421–3426 (2017)

    Article  Google Scholar 

  23. Yang, G.Y., Du, J.K., Wang, J., Yang, J.S.: Extension of a piezoelectric semiconductor fiber with consideration of electrical nonlinearity. Acta Mech. 229, 4663–4676 (2018)

    Article  MathSciNet  Google Scholar 

  24. Wang, G.L., Liu, J.X., Liu, X., Feng, W.J., Yang, J.S.: Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber. J. Appl. Phys. 124, 094502 (2018)

    Article  Google Scholar 

  25. Cheng, R.R., Zhang, C.L., Chen, W.Q., Yang, J.S.: Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. J. Appl. Phys. 124, 064506 (2018)

    Article  Google Scholar 

  26. Yang, W.L., Hu, Y.T., Yang, J.S.: Transient extensional vibration in a ZnO piezoelectric semiconductor nanofiber under a suddenly applied end force. Mater. Res. Express. 6, 025902 (2019)

    Article  Google Scholar 

  27. Gao, Y.F., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotrionics. Nano Lett. 7, 2499–2505 (2007)

    Article  Google Scholar 

  28. Gao, Y.F., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)

    Article  Google Scholar 

  29. Fan, S.Q., Liang, Y.X., Xie, J.M., Hu, Y.T.: Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance: part I—linearized analysis. Nano Energy 40, 82–87 (2017)

    Article  Google Scholar 

  30. Luo, Y.X., Zhang, C.L., Chen, W.Q., Yang, J.S.: Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy 54, 341–348 (2018)

    Article  Google Scholar 

  31. Dai, X.Y., Zhu, F., Qian, Z.H., Yang, J.S.: Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy 43, 22–28 (2018)

    Article  Google Scholar 

  32. Yang, J.S.: An anti-plane crack in a piezoelectric semiconductor. Int. J. Fract. 136, L27–L32 (2005)

    Article  Google Scholar 

  33. Hu, Y.T., Zeng, Y., Yang, J.S.: A mode III crack in a piezoelectric semiconductor of crystals with 6 mm symmetry. Int. J. Solids Struct. 44, 3928–3938 (2007)

    Article  Google Scholar 

  34. Sladek, J., Sladek, V., Pan, E., Young, D.L.: Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. CMES-Comp. Model. Eng. 99, 273–296 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Sladek, J., Sladek, V., Pan, E., Münsche, M.: Fracture analysis in piezoelectric semiconductors under a thermal load. Eng. Fract. Mech. 126, 27–39 (2014)

    Article  Google Scholar 

  36. Zhao, M.H., Pan, Y.B., Fan, C.Y., Xu, G.T.: Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors. Int. J. Solids Struct. 94, 50–59 (2016)

    Article  Google Scholar 

  37. Fan, C.Y., Yan, Y., Xu, G.T., Zhao, M.H.: Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method. Eng. Fract. Mech. 165, 183–196 (2016)

    Article  Google Scholar 

  38. Zhu, F., Ji, S.H., Zhu, J.Q., Qian, Z.H., Yang, J.S.: Study on the influence of semiconductive property for the improvement of nanogenerator by wave mode approach. Nano Energy 52, 474–484 (2018)

    Article  Google Scholar 

  39. Jiao, F., Zhou, Y., Zhou, X.: Wave propagation through a piezoelectric semiconductor slab sandwiched by two piezoelectric half-spaces. Eur. J. Mech. A/Solids 75, 70–81 (2019)

    Article  MathSciNet  Google Scholar 

  40. Jiao, F., Wei, P., Zhou, X., Zhou, Y.: The dispersion and attenuation of the multi-physical fields coupled waves in a piezoelectric semiconductor. Ultrasonics 92, 68–78 (2019)

    Article  Google Scholar 

  41. Wang, G.L., Nie, G.Q., Liu, X.L., Yang, J.S.: Magnetically-induced redistribution of mobile charges in bending of composite beams with piezoelectric semiconductor and piezomagnetic layers, Arch. Appl. Mech. 91, 2949–2956 (2021)

  42. Qu, Y.L., Jin, F., Yang, J.S.: Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Arch. Appl. Mech. 91, 2027–2038 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12072167, 11672141, 11972199, and 11672142), the Y. K. Pao Visiting Professorship at Ningbo University, the special research funding from the Marine Biotechnology and Marine Engineering Discipline Group in Ningbo University, and the K. C. Wong Magana Fund through Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianke Du.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Du, J., Wang, J. et al. Electromechanical fields in PN junctions with continuously graded doping in piezoelectric semiconductor rods. Arch Appl Mech 92, 325–333 (2022). https://doi.org/10.1007/s00419-021-02059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02059-0

Keywords

Navigation