Skip to main content
Log in

A TRT-LBM model of squeeze film air damping of micro-beam in the transition regime

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper uses TRT-LBM coupled with the effective viscosity to predict squeeze film air damping (SQFD) of micro-beam in the transition regime. The result shows that, in the transition regime, recent MC model underestimates the quality factor for ignoring the gas viscosity effect and recent Reynolds model overestimates it for ignoring the rarefaction effect. The TRT-LBM model proposed in this paper is more accurate than Reynolds and MC models in the transition regime. In addition, the end effect on SQFD is discussed, which shows that the constant ambient pressure condition on the edges would overestimate the quality factor of SQFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zook, J.D., Burns, D.W.: Characteristics of polysilicon resonant microbeams. Sens. Actuators A 35, 51–59 (1992)

    Article  Google Scholar 

  2. Fedeli, P., Frangi, A., Laghi, G., et al.: Near vacuum gas damping in MEMS: simplified modeling. J. Microelectromech. Syst. 26(3), 632–642 (2017)

    Article  Google Scholar 

  3. Bao, M.H., Yang, H.: Squeeze film air damping in MEMS. Sens. Actuators A. 136(1), 3–27 (2007)

    Article  MathSciNet  Google Scholar 

  4. Blech, J.J.: On isothermal squeeze films. J. Lubr. Technol. 105, 615–620 (1983)

    Article  Google Scholar 

  5. Veijola, T.: Compact models for squeeze film dampers with inertial and rarefied gas effects. J. Micromech. Microeng. 14, 1109–1118 (2004)

    Article  Google Scholar 

  6. Pandey, A.K., Pratap, R., Chau, F.S.: Influence of boundary conditions on the dynamic characteristics of squeeze films in MEMS devices. J. Microelectromech. Syst. 16, 893–903 (2007)

    Article  Google Scholar 

  7. Nayfeh, A.H., Younis, M.I.: A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. J. Micromech. Microeng. 14, 170–181 (2004)

    Article  Google Scholar 

  8. Sedighi, H.M., Moory-Shirbani, M., Koochi, A., et al.: A modified model for circular scanner-type nano-mirrors with size-dependency, squeeze film damping and Casimir effects by considering finite conductivity. Microsyst. Technol. 23(4), 875–888 (2017)

    Article  Google Scholar 

  9. Bao, M.H., Yang, H., Yin, H., et al.: Energy transfer model for squeeze-film air damping in low vacuum. J. Micromech. Microeng. 12, 341–346 (2002)

    Article  Google Scholar 

  10. Hutcherson, S., Ye, W.J.: On the squeeze-film damping of micro-resonators in the free-molecule regime. J. Micromech. Microeng. 14, 1726–1733 (2004)

    Article  Google Scholar 

  11. Li, P., Fang, Y.M.: A molecular dynamics simulation approach for the squeeze-film damping of MEMS devices in the free molecular regime. J. Micromech. Microeng. 20, 035005 (2010)

    Article  Google Scholar 

  12. Bidkar, R.A., Tung, R.C., Alexeenko, A.A., et al.: Unified theory of gas damping of flexible microcantilevers at low ambient pressures. Appl. Phys. Lett. 94, 163117 (2009)

    Article  Google Scholar 

  13. Stops, D.W.: The mean free path of gas molecules in the transition regime. J. Phys. D. 3, 685–697 (1970)

    Article  Google Scholar 

  14. Guo, Z.L., Zhao, T.S., Shi, Y.: Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows. J. Appl. Phys. 99, 074903 (2006)

    Article  Google Scholar 

  15. Zhang, Y.H., Gu, X.J., Barber, R.W., et al.: Capturing Knudsen layer phenomena using a lattice Boltzmann model. Phys. Rev. E. 74, 046704 (2006)

    Article  Google Scholar 

  16. Beskok, A., Karniadakis, G.E.: A model for flows in channels, pipes, and ducts at micro-and nano-scales. J. Microscal. Thermophys. Eng. 3, 43–77 (1999)

    Article  Google Scholar 

  17. Michalis, V.K., Kalarakis, A.N., Skouras, E.D., et al.: Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid Nanofluid 9(4–5), 847–853 (2010)

    Article  Google Scholar 

  18. Tao, S., Guo, Z.L.: Boundary condition for lattice Boltzmann modeling of microscale gas flows with curved walls in the slip regime. Phys. Rev. E. 91, 043305 (2015)

    Article  Google Scholar 

  19. Guo, Z.L., Zheng, C.G.: Analysis of lattice Boltzmann equation for microscale gas flows: relaxation time, Boundary condition, and Knudsen layer. Int J. Comput. Fluid. Dyn 22(7), 465–473 (2008)

    Article  Google Scholar 

  20. Kazuhiko, S., Takahiko, I.: On the multiple-relaxation-time micro-flow lattice Boltzmann method for complex flows. CMES 75, 141–172 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Esfahani, J.A., Norouzi, A.: Two relaxation time lattice Boltzmann model for rarefied gas flows. Phys. A. 393, 51–61 (2014)

    Article  MathSciNet  Google Scholar 

  22. Norouzi, A., Esfahani, J.A.: Two relaxation time lattice Boltzmann equation for high Knudsen number flows using wall function approach. Microfluid Nanofluid 18, 323–332 (2015)

    Article  Google Scholar 

  23. Colosqui, C.E., Karabacak, D.M., Ekinci, K.L., et al.: Lattice Boltzmann simulation of electromechanical resonators in gaseous media. J. Fluid. Mech. 652, 241–257 (2010)

    Article  Google Scholar 

  24. Yang, W.L., Li, H.X., Chatterjee, A.N., et al.: A novel approach to the analysis of squeezed-film air damping in microelectromechanical systems. J. Micromech. Microeng. 27, 015012 (2017)

    Article  Google Scholar 

  25. Qiu, H.C., Schwarz, P., Feili, D., et al.: Air damping of micro bridge resonator vibrating close to a surface with a moderate distance. J. Micromech. Microeng. 25, 055016 (2015)

    Article  Google Scholar 

  26. Ozdoganlar, O.B., Hanshce, B.D., Carne, T.G.: Experimental modal for microelectromechanical systems . Exp. Mech. 45, 498–506 (2005)

    Article  Google Scholar 

  27. Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation Adv. Water. Resour. 28(11), 1171–1195 (2005)

    Article  Google Scholar 

  28. Talon, L., Bauer, D., Gland, N., et al.: Assessment of the two relaxation time Lattice-Boltzmann scheme to simulate Stokes flow in porous media Water. Resour. Res. 48, W04526 (2012)

    Article  Google Scholar 

  29. Pollard, W.G., Present, R.D.: On Gaseous Self-Diffusion in Long Capillary Tubes. Phys. Rev. 73(7), 762–774 (1948)

  30. Nie, X.B., Doolen, G.D., Chen, S.Y.: Lattice-Boltzmann simulations of fluid flows in MEMS. J. Stat. Phys. 107, 279–289 (2002)

    Article  Google Scholar 

  31. Succi, S.: Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis. Phys. Rev. Lett. 89, 064502 (2002)

    Article  Google Scholar 

  32. Tang, G.H., Tao, W.Q., He, L.Y.: Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions. Phys. Fluids. 17, 058101 (2005)

    Article  Google Scholar 

  33. Verhaege, F., Luo, L.S., Blanpain, B.: Lattice Boltzmann modeling of microchannel flow in slip flow regime. J. comput. Phys. 228(1), 147–157 (2009)

    Article  MathSciNet  Google Scholar 

  34. Li, P., Lu, C.H.: Capture the rarefaction effect in microchannels using the TRT-LBM model. J. Phys. Conf. Ser. 1053, 012054 (2018)

    Article  Google Scholar 

  35. Guo, X.H., Alexeenko, A.: Compact model of squeeze-film damping based on rarefied flow simulations. J. Micromech. Microeng. 19, 045026 (2009)

    Article  Google Scholar 

  36. Sumali, H.: Squeeze-film damping in the free molecular regime: model validation and measurement on a MEMS. J. Micromech. Microeng. 17, 2231–2240 (2007)

    Article  Google Scholar 

  37. Benhamed, M., Abouelregal, A.: Influence of temperature pulse on a nickel microbeams under couple stress theory. J. Appl. Comput. Mech. 6(4), 777–787 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunhao Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Yuan, R. & Li, P. A TRT-LBM model of squeeze film air damping of micro-beam in the transition regime. Arch Appl Mech 91, 4589–4598 (2021). https://doi.org/10.1007/s00419-021-02024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02024-x

Keywords

Navigation