Skip to main content
Log in

Instability analysis of moderately thick porous micro-plate via two-variable strain gradient theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this study, the buckling analysis of moderately thick porous micro-plate is investigated to predict instability of the micro-plate using strain gradient theory and two-variable refined plate theory termed two-variable strain gradient theory (TV-SGT). The governing equations and new boundary conditions are achieved. Also, the Navier solution technique is utilized to obtain analytical solutions for the simply supported moderately thick porous rectangular micro-plates. The non-dimensionalized critical buckling load of moderately thick porous micro-plate for uniaxial and biaxial buckling loadings is obtained, and the results of the uniaxial loading show a larger threshold compared to the biaxial loading. The effects of thickness, length scale parameters, porosity, and the variation of material property through the thickness on the non-dimensionalized critical buckling load of thick porous micro-plate are investigated. Increasing thickness reflects a large difference between two-variable strain gradient theory (TV-SGT) and classical theory results. Moreover, increasing thickness affects the non-dimensionalized critical buckling load, significantly. Notably, increasing porosity presents a distinguished influence on the non-dimensionalized critical buckling load of the thick porous micro-plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fraser, D., Mendonca, G., Sartori, E., Funkenbusch, P., Ercoli, C., Meirelles, L.: Bone response to porous tantalum implants in a gap-healing model. Clin. Oral Implant Res. 30(2), 156–168 (2019)

    Google Scholar 

  2. Rohani Rad, E., Farajpour, M.R.: Dynamics analysis of microparticles in inertial microfluidics for biomedical applications. J. Comput. Appl. Mech. 50(1), 157–164 (2019)

    Google Scholar 

  3. Farajpour, A., Rastgoo, A., Mohammadi, M.: Surface effects on the mechanical characteristics of microtubule networks in living cells. Mech. Res. Commun. 57, 18–26 (2014)

    Article  Google Scholar 

  4. Farajpour, A., Rastgoo, A., Mohammadi, M.: Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment. Phys. B 509, 100–114 (2017)

    Article  Google Scholar 

  5. Rohani Rad, E., Farajpour, M.R.: Influence of taxol and CNTs on the stability analysis of protein microtubules. J. Comput. Appl. Mech. 50(1), 140–147 (2019)

    Google Scholar 

  6. Safarabadi, M., Mohammadi, M., Farajpour, A., Goodarzi, M.: Effect of surface energy on the vibration analysis of rotating nanobeam. J. Solid Mech. 7(3), 299–311 (2015)

    Google Scholar 

  7. Su, C., Zhang, L., Han, Y., Chen, X., Wang, S., Zeng, M., Hu, N., Su, Y., Zhou, Z., Wei, H., Yang, Z.: Glucose-assisted synthesis of hierarchical flower-like Co3O4 nano structures assembled by porous nano sheets for enhanced acetone sensing. Sens. Actuators B Chem. 288, 699–706 (2019)

    Article  Google Scholar 

  8. Singh, A.K., Flounders, A.W., Volponi, J.V., Ashley, C.S., Wally, K., Schoeniger, J.S.: Development of sensors for direct detection of organophosphates. Part I: immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports. Biosens. Bioelectr. 14(8–9), 703–713 (1999)

    Article  Google Scholar 

  9. Genao, F.Y., Kim, J., Żur, K.K.: Nonlinear finite element analysis of temperature-dependent functionally graded porous micro-plates under thermal and mechanical loads. Compos. Struct. 256, 112931 (2020)

    Article  Google Scholar 

  10. Thanh, C.L., Tran, L.V., Bui, T.Q., Nguyen, H.X., Abdel-Wahab, M.: Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates. Compos. Struct. 221, 110838 (2019)

    Article  Google Scholar 

  11. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  12. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  13. Demir, E., Raabe, D., Roters, F.: The mechanical size effect as a mean-field breakdown phenomenon: example of microscale single crystal beam bending. Acta Mater. 58(5), 1876–1886 (2010)

    Article  Google Scholar 

  14. Liu, D., He, Y., Dunstan, D.J., Zhang, B., Gan, Z., Hu, P., Ding, H.: Toward a further understanding of size effects in the torsion of thin metal wires: an experimental and theoretical assessment. Int. J. Plast. 41, 30–52 (2013)

    Article  Google Scholar 

  15. Motz, C., Schöberl, T., Pippan, R.: Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater. 53(15), 4269–4279 (2005)

    Article  Google Scholar 

  16. Lei, J., He, Y., Guo, S., Li, Z., Liu, D.: Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. Aip Adv. 6(10), 105202 (2016)

    Article  Google Scholar 

  17. Zhou, S., Li, A., Wang, B.: A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials. Int. J. Solids Struct. 80, 28–37 (2016)

    Article  Google Scholar 

  18. Farahmand, H., Naseralavi, S.S., Iranmanesh, A., Mohammadi, M.: Navier solution for buckling analysis of size-dependent functionally graded micro-plates. Latin Am. J. Solids Struct. 13(16), 3161–3173 (2016)

    Article  Google Scholar 

  19. Hosseini, M., Bahreman, M., Jamalpoor, A.: Using the modified strain gradient theory to investigate the size-dependent biaxial buckling analysis of an orthotropic multi-microplate system. Acta Mech. 227(6), 1621–1643 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ke, L.L., Yang, J., Kitipornchai, S., Bradford, M.A.: Bending, buckling and vibration of size-dependent functionally graded annular microplates. Compos. Struct. 94(11), 3250–3257 (2012)

    Article  Google Scholar 

  21. Thanh, C.L., Tran, L.V., Vu-Huu, T., Abdel-Wahab, M.: The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 350, 337–361 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jamalpoor, A., Hosseini, M.: Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory. Compos. B Eng. 75, 53–64 (2015)

    Article  Google Scholar 

  23. Porous Materials. http://www.uio.no/studier/emner/matnat/kjemi/KJM5100/h06/undervisningsmateriale/16KJM51002006porouse.pdf

  24. Biot, M.A.: Theory of buckling of a porous slab and its thermoelastic analogy. J. Appl. Mech. 31(2), 194–198 (1964)

    Article  MathSciNet  Google Scholar 

  25. Magnucki, K., Malinowski, M., Kasprzak, J.: Bending and buckling of a rectangular porous plate. Steel Compos. Struct. 6(4), 319–333 (2006)

    Article  Google Scholar 

  26. Magnucka-Blandzi, E.: Axi-symmetrical deflection and buckling of circular porous-cellular plate. Thin Walled Struct. 46(3), 333–337 (2008)

    Article  Google Scholar 

  27. Hu, H., Yu, T., Bui, T.Q.: Dynamic and static isogeometric analysis for laminated Timoshenko curved microbeams. Eng. Anal. Bound. Elements 128, 90–104 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, S., Yu, T., Yin, S., Bui, T.Q.: Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis. Comput. Struct. 1(212), 173–187 (2019)

    Article  Google Scholar 

  29. Yu, T., Hu, H., Zhang, J., Bui, T.Q.: Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory. Thin Walled Struct. 138, 1–14 (2019)

    Article  Google Scholar 

  30. Yu, T., Zhang, J., Hu, H., Bui, T.Q.: A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis. Compos. Struct. 211, 76–88 (2019)

    Article  Google Scholar 

  31. Fang, W., Yu, T., Bui, T.Q.: Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis. Compos. Struct. 221, 110890 (2019)

    Article  Google Scholar 

  32. Yin, S., Hale, J.S., Yu, T., Bui, T.Q., Bordas, S.P.: Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates. Compos. Struct. 118, 121–138 (2014)

    Article  Google Scholar 

  33. Bui, T.Q., Van Do, T., Ton, L.H.T., Doan, D.H., Tanaka, S., Pham, D.T., Nguyen-Van, T.A., Yu, T., Hirose, S.: On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory. Compos. B Eng. 92, 218–241 (2016)

    Article  Google Scholar 

  34. Kim, J., Żur, K.K., Reddy, J.N.: Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos. Struct. 209, 879–888 (2019)

    Article  Google Scholar 

  35. Chen, D., Yang, J., Kitipornchai, S.: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142, 235–245 (2017)

    Article  Google Scholar 

  36. Coskun, S., Kim, J., Toutanji, H.: Bending, free vibration, and buckling analysis of functionally graded porous micro-plates using a general third-order plate theory. J. Compos. Sci. 3(1), 15 (2019)

    Article  Google Scholar 

  37. Malekzadeh, P., Shenas, A.G., Ziaee, S.: Thermal buckling of functionally graded triangular microplates. J. Braz. Soc. Mech. Sci. Eng. 40(9), 418 (2018)

    Article  Google Scholar 

  38. Arefi, M., Bidgoli, E.M.R., Rabczuk, T.: Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT. Thin Walled Struct. 142, 444–459 (2019)

    Article  Google Scholar 

  39. Shimpi, R.P., Patel, H.G.: A two variable refined plate theory for orthotropic plate analysis. Int. J. Solids Struct. 43(22–23), 6783–6799 (2006)

    Article  MATH  Google Scholar 

  40. Kianian, O., Sarrami-Foroushani, S., Azhari, M.: Buckling analysis of functionally graded plates based on two-variable refined plate theory using the bubble finite strip method. Civ. Eng. 1(2), 145–152 (2017)

    Google Scholar 

  41. Thai, H.T., Vo, T.P., Bui, T.Q., Nguyen, T.K.: A quasi-3D hyperbolic shear deformation theory for functionally graded plates. Acta Mech. 225(3), 951–964 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thai, H.T., Vo, T.P.: A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. Appl. Math. Model. 37(5), 3269–3281 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Afshari, H., Adab, N.: Size-dependent buckling and vibration analyses of GNP reinforced microplates based on the quasi-3D sinusoidal shear deformation theory. In: Mechanics Based Design of Structures and Machines, pp. 1–22 (2020). https://doi.org/10.1080/15397734.2020.1713158

  44. Sayyad, A.S.: Flexure of thick orthotropic plates by exponential shear deformation theory. Latin Am. J. Solids Struct. 10(3), 473–490 (2013)

    Article  Google Scholar 

  45. Bahreman, M., Darijani, H., Fard, A.B.: The size-dependent analysis of microplates via a newly developed shear deformation theory. Acta Mech. 230(1), 49–65 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Farahmand, H.: Analytical solutions of bending and free vibration of moderately thick micro-plate via two-variable strain gradient theory. J. Braz. Soc. Mech. Sci. Eng. 42, 1–11 (2020)

    Article  Google Scholar 

  47. Shimpi, R.P.: Refined plate theory and its variants. AIAA J. 40(1), 137–146 (2002)

    Article  Google Scholar 

  48. Thai, H.T., Kim, S.E.: Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates. Int. J. Mech. Sci. 54(1), 269–276 (2012)

    Article  Google Scholar 

  49. Ahmadi, A.R., Farahmand, H., Arabnejad, S.: Static deflection analysis of flexural simply supported sectorial micro-plate using p-version finite-element method. Int. J. Multiscale Comput. Eng. 9(2), 193–200 (2011)

    Article  Google Scholar 

  50. Ahmadi, A.R., Farahmand, H.: Static deflection analysis of flexural rectangular micro-plate using higher continuity finite-element method. Mech. Ind. 13(4), 261–269 (2012)

    Article  Google Scholar 

  51. Detournay, E., Cheng, A.H.D.: Fundamentals of poroelasticity. In: Analysis and Design Methods, pp. 113–171. Pergamon (1993). https://doi.org/10.1016/B978-0-08-040615-2.50011-3

  52. Papargyri-Beskou, S., Giannakopoulos, A.E., Beskos, D.E.: Variational analysis of gradient elastic flexural plates under static loading. Int. J. Solids Struct. 47(20), 2755–2766 (2010)

    Article  MATH  Google Scholar 

  53. Wang, B., Zhou, S., Zhao, J., Chen, X.: A size-dependent Kirchhoff micro plate model based on strain gradient elasticity theory. Eur. J. Mech. A Solids 30(4), 517–524 (2011)

    Article  MATH  Google Scholar 

  54. Liu, S., Yu, T., Bui, T.Q.: Size effects of functionally graded moderately thick micro-plates: a novel non-classical simple-FSDT isogeometric analysis. Eur. J. Mech. A Solids 66, 446–458 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ahmadi, A.R., Farahmand, H., Arabnejad, S.: Buckling analysis of rectangular flexural microplates using higher continuity p-version finite-element method. Int. J. Multiscale Comput. Eng. 10(3), 249–259 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Farahmand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahmand, H., Yasaie, P. Instability analysis of moderately thick porous micro-plate via two-variable strain gradient theory. Arch Appl Mech 91, 4459–4473 (2021). https://doi.org/10.1007/s00419-021-02021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02021-0

Keywords

Navigation