Skip to main content

Advertisement

Log in

Piezoelectric energy harvesting via thin annular sectorial plates: an analytical approach

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, energy harvesting from a thin annular sectorial plate, which consists of an elastic layer bonded with two layers of piezoelectric materials, is studied analytically. The Rayleigh damping assumption is used in the model to consider the structural damping. To derive the governing equations, the Hamilton principle for an electro-elastic body is employed based on the classical plate theory, and to solve the derived equations, the Rayleigh–Ritz method is used. The modeling approach is verified against analytical solutions as well as experimental results for rectangular and annular sectorial plates. Finally, the impact of changing some parameters (material properties, electrical boundary conditions, geometrical parameters) on the performance of the system is investigated extensively. It is shown that the annular sector plate energy harvesters can deliver better performance compared to rectangular plate energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, New York (2011)

    Book  Google Scholar 

  2. Sodano, H.A., Inman, D.J., Park, G.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Digest 36, 197–205 (2004)

    Article  Google Scholar 

  3. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, R1–R21 (2007)

    Article  Google Scholar 

  4. Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19, 165–182 (2007)

    Article  Google Scholar 

  5. Priya, S., Song, H.-C., Zhou, Y., Varghese, R., Chopra, A., Kim, S.-G., Kanno, I., Wu, L., Ha, D.S., Ryu, J., Polcawich, R.G.: A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvest. Syst. 4(1), 3–39 (2017)

    Article  Google Scholar 

  6. Sarker, M.R., Julai, S., Sabri, M.F.M., Said, S.M., Islam, M.M., Tahir, M.: Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. Sens. Actuators A Phys. 300, 111634 (2019)

    Article  Google Scholar 

  7. Covaci, C., Gontean, A.: Piezoelectric energy harvesting solutions: a review. Sensors 20(12), 3512 (2020)

    Article  Google Scholar 

  8. Kouider, B., Polat, A.: Optimal position of piezoelectric actuators for active vibration reduction of beams. Appl. Math. Nonlinear Sci. 5(1), 385–392 (2020)

    Article  MathSciNet  Google Scholar 

  9. Zhang, Z., Xiang, H., Tang, L.: Modeling, analysis and comparison of four charging interface circuits for piezoelectric energy harvesting. Mech. Syst. Signal Process. 152, 107476 (2021)

    Article  Google Scholar 

  10. Kim, S., Clark, W.W., Wang, Q.-M.: Piezoelectric energy harvesting with a clamped circular plate: analysis. J. Intell. Mater. Syst. Struct. 16(10), 847–854 (2005)

    Article  Google Scholar 

  11. Kim, S., Clark, W.W., Wang, Q.-M.: Piezoelectric energy harvesting with a clamped circular plate: experimental study. J. Intell. Mater. Syst. Struct. 16(10), 855–863 (2005)

    Article  Google Scholar 

  12. Erturk, A.: Piezoelectric energy harvesting for civil infrastructure system applications: Moving loads and surface strain fluctuations. J. Intell. Mater. Syst. Struct. 22(17), 1959–1973 (2011)

    Article  Google Scholar 

  13. Bendie, K., Polat, A.: Numerical modelling of piezoelectric based energy harvesting from the bridge structure. Int. J. Pure Appl. Sci. 6(2), 130–139 (2020)

    Google Scholar 

  14. duToit, N.E., Wardle, B.L.: Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J. 45(5), 1126–1137 (2007)

    Article  Google Scholar 

  15. Sodano, H.A., Park, G., Inman, D.J.: Estimation of electric charge output for piezoelectric energy harvesting. Strain 40(2), 49–58 (2004)

    Article  Google Scholar 

  16. Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13(5), 1131–1142 (2004)

    Article  Google Scholar 

  17. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130(4), 041002 (2008)

    Article  Google Scholar 

  18. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18(2), 025009 (2009)

    Article  Google Scholar 

  19. Erturk, A.: Assumed-modes modeling of piezoelectric energy harvesters: Euler–Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Comput. Struct. 106–107, 2014–2227 (2012)

    Google Scholar 

  20. Friswell, M.I., Faruque Ali, S., Bilgen, O., Adhikari, S., Lees, A.W., Litak, G.: Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 23(13), 1505–1521 (2012)

    Article  Google Scholar 

  21. Wang, G.: Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli beam theory. J. Intell. Mater. Syst. Struct. 24(2), 226–239 (2012)

    Article  Google Scholar 

  22. Jabbari, M., Ghayour, M., Mirdamadi, H.: Experimental and numerical results of dynamics behavior of a nonlinear Piezoelectric beam. Mech. Adv. Mater. Struct. 23(8), 853–864 (2016)

    Article  Google Scholar 

  23. Srinivasulu Raju, S., Umapathy, M., Uma, G.: Design and analysis of high output piezoelectric energy harvester using non uniform beam. Mech. Adv. Mater. Struct. 27(3), 218–227 (2018)

    Article  Google Scholar 

  24. de Almeida, B.V., Pavanello, R.: Topology optimization of the thickness profile of bimorph piezoelectric energy harvesting devices. J. Appl. Comput. Mech. 5(1), 113–127 (2019)

    Google Scholar 

  25. Xia, G., Fang, F., Wang, Q., Zhang, M., Wang, J.: Performance analysis of piezoelectric energy harvesters with a tip mass and nonlinearities of geometry and damping under parametric and external excitations. Arch. Appl. Mech. 90, 2297–2318 (2020)

    Article  Google Scholar 

  26. Wang, K.F., Wang, B.L., Gao, Y., Zhou, J.Y.: Nonlinear analysis of piezoelectric wind energy harvesters with different geometrical shapes. Arch. Appl. Mech. 90(4), 721–736 (2020)

    Article  Google Scholar 

  27. De Marqui, C., Junior, A.E., Inman, D.J.: An electromechanical finite element model for piezoelectric energy harvester plates. J. Sound Vib. 327, 9–25 (2009)

    Article  Google Scholar 

  28. Darabi, A., Shahab, S., Leamy, M.J., Erturk, A.: Bimorph disk piezoelectric energy harvester under base excitation: electroelastic modeling and experimental validation. In: Active and Passive Smart Structures and Integrated Systems, vol. 9431 (2015)

  29. Yoon, H., Youn, B.D., Kim, H.S.: Kirchhoff plate pheory-based electromechanically-coupled analytical model considering inertia and stiffness effects of a surface-bonded piezoelectric patch. Smart Mater. Struct. 25, 025017 (2016)

    Article  Google Scholar 

  30. Sayyaadi, H., Rahnama, F.: On the energy harvesting via doubly curved piezoelectric panels. J. Intell. Mater. Syst. Struct. 27(19), 2692–2706 (2016)

    Article  Google Scholar 

  31. Sayyaadi, H., Rahnama, F., Farsangi, M.A.A.: Energy harvesting via shallow cylindrical and spherical piezoelectric panels using higher order shear deformation theory. Compos. Struct. 147, 155–167 (2016)

    Article  Google Scholar 

  32. Paknejad, A., Rahimi, G., Salmani, H.: Analytical solution and numerical validation of piezoelectric energy harvester patch for various thin multilayer composite plates. Arch. Appl. Mech. 88(7), 1139–1161 (2018)

    Article  Google Scholar 

  33. Jomehzadeh, E., Saidi, A.R.: Analytical solution for free vibration of transversely isotropic sector plates using a boundary layer function. Thin-Walled Struct. 47(1), 82–88 (2009)

    Article  Google Scholar 

  34. Zhanga, H., Zhua, R., Shib, D., Wang, Q.: A simplified plate theory for vibration analysis of composite laminated sector, annular and circular plate. Thin-Walled Struct. 143, 106252 (2019)

    Article  Google Scholar 

  35. Hasani Baferani, A., Saidi, A.R., Jomehzadeh, E.: Exact analytical solution for free vibration of functionally graded thin annular sector plates resting on elastic foundation. J. Vib. Control 18(2), 246–267 (2011)

    Article  MATH  Google Scholar 

  36. Saidi, A.R., Hasani Baferani, A., Jomehzadeh, E.: Benchmark solution for free vibration of functionally graded moderately thick annular sector plates. Acta Mech. 219(3–4), 309–335 (2011)

    Article  MATH  Google Scholar 

  37. Jomehzadeh, E., Saidi, A.R.: Accurate natural frequencies of transversely isotropic moderately thick annular sector plates. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 223(2), 307–317 (2009)

    Article  Google Scholar 

  38. Rezaei, A.S., Saidi, A.R.: An analytical study on the free vibration of moderately thick fluid-infiltrated porous annular sector plates. J. Vib. Control 27(18), 4130–4144 (2017)

    Article  MathSciNet  Google Scholar 

  39. Kamranfard, M.R., Saidi, A.R., Nader, A.: Analytical solution for vibration and buckling of annular sectorial porous plates under in-plane uniform compressive loading. J. Mech. Eng. Sci. 232(12), 2211–2228 (2017)

    Article  Google Scholar 

  40. Leissa, A.W., McGee, O.G., Huang, C.S.: Vibrations of sectorial plates having corner stress singularities. J. Appl. Mech. 60(1), 134–140 (1993)

    Article  Google Scholar 

  41. Huang, C.S., Leissa, A.W., Mo Gee, O.G.: Exact analytical solutions for the vibrations of sectorial plates with simply-supported radial edges. J. Appl. Mech. 60(2), 478–483 (1993)

    Article  MATH  Google Scholar 

  42. Xiang, Y., Liew, K.M., Kitipornchai, S.: Transverse vibration of thick annular sector plates. J. Eng. Mech. 119(8), 1579–1599 (1993)

    Google Scholar 

  43. IEEE Group on Sonics and Ultrasonics, IEEE Standard on Piezoelectricity, New York, 1978.

  44. Leissa, A.W.: The free vibration of rectangular plates. J. Sound Vib. 31(3), 257–293 (1973)

    Article  MATH  Google Scholar 

  45. Aladwani, A., Aldraihem, O., Baz, A.: A distributed parameter cantilevered piezoelectric energy harvester with a dynamic magnifier. Mech. Adv. Mater. Struct. 21(7), 566–578 (2014)

    Article  Google Scholar 

  46. Hejripour, F., Saidi, A.R.: Nonlinear free vibration analysis of annular sector plates using differential quadrature method. J. Mech. Eng. Sci. 226(2), 485–497 (2011)

    Article  Google Scholar 

  47. Askari Farsangi, M.A., Saidi, A.R.: Levy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers. Smart Mater. Struct. 21(9), 094017 (2012)

    Article  Google Scholar 

  48. Askari Farsangi, M.A., Saidi, A.R., Batra, R.C.: Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates. J. Sound Vib. 332(22), 5981–5998 (2013)

    Article  Google Scholar 

  49. Askari, M., Saidi, A.R., Rezaei, A.S.: On natural frequencies of levy-type thick porous-cellular plates surrounded by piezoelectric layers. Compos. Struct. 179, 340–354 (2017)

    Article  Google Scholar 

  50. Sarafraz, A.A., Roknizadeh, S.A.S.: Shape and geometrical parameter effects of a bimorph piezoelectric beam on energy harvesting performance. J. Appl. Comput. Mech. 3(2), 92–102 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moein Rahmani Naeim Abadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani Naeim Abadi, M., Saidi, A.R. & Askari Farsangi, M.A. Piezoelectric energy harvesting via thin annular sectorial plates: an analytical approach. Arch Appl Mech 91, 3365–3382 (2021). https://doi.org/10.1007/s00419-021-01971-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01971-9

Keywords

Navigation