Skip to main content
Log in

Magnetically induced redistribution of mobile charges in bending of composite beams with piezoelectric semiconductor and piezomagnetic layers

  • Technical notes
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We study the effects of an applied magnetic field on mobile charges in a composite beam of piezoelectric semiconductor and piezomagnetic layers. The macroscopic theory of piezoelectrics/piezomagnetics and the drift–diffusion theory of semiconductors are used. A one-dimensional model for beam bending is derived. An analytical solution is obtained, showing that bending and axial polarization develops in the beam under the applied magnetic field and that the mobile charges move to screen the effective polarization charges. Hence the composite beam exhibits an interaction between the applied magnetic field and semiconduction. The results are useful in piezotronic devices interacting with magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The data that support the findings of this study are available within the article.

References

  1. Wang, Z.L., Wu, W.Z., Falconi, C.: Piezotronics and piezophototronics with third generation semiconductors. MRS Bull. 43, 922–927 (2018). https://doi.org/10.1557/mrs.2018.263

    Article  Google Scholar 

  2. Lew Yan Voon, L.C., Willatzen, M.: Electromechanical phenomena in semiconductor nanostructures. J. Appl. Phys.. 109, 031101 (2011). https://doi.org/10.1063/1.3533402

    Article  Google Scholar 

  3. Wang, Z.L.: Piezotronics and Piezo-phototronics. Springer, Berlin (2012)

    Book  Google Scholar 

  4. Liu, Y.D., Wahyudin, E.T.N., He, J.H., Zhai, J.Y.: Piezotronics and piezo-phototronics in two-dimensional materials. MRS Bull. 43, 959–964 (2018). https://doi.org/10.1557/mrs.2018.293

    Article  Google Scholar 

  5. Cui, N.Y., Wu, W.W., Zhao, Y., Bai, S., Meng, L.X., Qin, Y., Wang, Z.L.: Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett. 12, 3701–3705 (2012). https://doi.org/10.1021/nl301490q

    Article  Google Scholar 

  6. Huang, L.B., Bai, G.X., Wong, M.C., Yang, Z.B., Wu, W., Hao, J.H.: Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions. Adv. Mater. 28, 2744–2751 (2016). https://doi.org/10.1002/adma.201505839

    Article  Google Scholar 

  7. Wong, M.C., Chen, L., Tsang, M.K., Zhang, Y., Hao, J.H.: Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect. Adv. Mater. 27, 4488–4495 (2015). https://doi.org/10.1002/adma.201502015

    Article  Google Scholar 

  8. Peng, M.Z., Zhang, Y., Liu, Y.D., Song, M., Zhai, J.Y., Wang, Z.L.: Magnetic-mechanical-electrical-optical coupling effects in GaN-based led/rare-earth Terfenol-D structures. Adv. Mater. 26, 6767–6772 (2014). https://doi.org/10.1002/adma.201402824

    Article  Google Scholar 

  9. Liu, Y.D., Guo, J.M., Yu, A.F., Zhang, Y., Kou, J.Z., Zhang, K., Wen, R.M., Zhang, Y., Zhai, J.Y., Wang, Z.L.: Magnetic-induced-piezopotential gated MoS2 field-effect transistor at room temperature. Adv. Mater. 30, 1704524 (2018). https://doi.org/10.1002/adma.201704524

    Article  Google Scholar 

  10. Piotrowski, C., Bendson, S.A., Loeding, N.W., Mularie, W.M.: U.S. Patent 4 520 413 [1985-5-28]

  11. Cheng, R.R., Zhang, C.L., Zhang, C.Z., Chen, W.Q.: Magnetically controllable piezotronic responses in a composite semiconductor fiber with multiferroic coupling effects. Phys. Status Solidi A 217, 1900621 (2020). https://doi.org/10.1002/pssa.201900621

    Article  Google Scholar 

  12. Wang, G.L., Liu, J.X., Feng, W.J., Liu, X.L., Yang, J.S.: Magnetically induced extension in a composite rod of piezoelectric semiconductors and piezomagnetics. Materials 13, 3115 (2020). https://doi.org/10.3390/ma13143115

    Article  Google Scholar 

  13. Kong, D.J., Cheng, R.R., Zhang, C.L., Zhang, C.Z.: Dynamic manipulation of piezotronic behaviors of composite multiferroic semiconductors through time-dependent magnetic field. J. Appl. Phys. 128, 064503 (2020). https://doi.org/10.1063/5.0015957

    Article  Google Scholar 

  14. Afraneo, R., Lovat, G., Burghignoli, P., Falconi, C.: Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Adv. Mater. 24, 4719–4724 (2012). https://doi.org/10.1002/adma.201104588

    Article  Google Scholar 

  15. Zhang, C.L., Wang, X.Y., Chen, W.Q., Yang, J.S.: An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Mater. Struct. 26, 025030 (2017). https://doi.org/10.1088/1361-665X/aa542e

    Article  Google Scholar 

  16. Zhao, M.H., Liu, X., Fan, C.Y., Lu, C.S., Wang, B.B.: Theoretical analysis on the extension of a piezoelectric semi-conductor nanowire: effects of flexoelectricity and strain gradient. J. Appl. Phys. 127, 085707 (2020). https://doi.org/10.1063/1.5131388

    Article  Google Scholar 

  17. Gao, Y.F., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009). https://doi.org/10.1021/nl803547f

    Article  Google Scholar 

  18. Liang, Y.X., Fan, S.Q., Chen, X.D., Hu, Y.T.: Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction. Nanotechnology 9, 1917–1925 (2018). https://doi.org/10.3762/bjnano.9.183

    Article  Google Scholar 

  19. Viet, N.V., Zaki, W., Umer, R.: Analytical investigation of an energy harvesting shape memory alloy-piezoelectric beam. Arch. Appl. Mech. 90, 2715–2738 (2020). https://doi.org/10.1007/s00419-020-01745-9

    Article  Google Scholar 

  20. Qu, Y.L., Jin, F., Yang, J.S.: Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Arch. Appl. Mech. (2021). https://doi.org/10.1007/s00419-020-01867-0

    Article  Google Scholar 

  21. Dhanesh, N., Kapuria, S.: Torsion of a piezoelasticity solution for edge stress field in weakly bonded piezoelectric composite laminates. Arch. Appl. Mech. (2021). https://doi.org/10.1007/s00419-021-01892-7

    Article  Google Scholar 

  22. Guo, M.K., Li, Y., Qin, G.S., Zhao, M.H.: Nonlinear solutions of PN junctions of piezoelectric semiconductors. Acta Mech. 230, 1825–1841 (2019). https://doi.org/10.1007/s00707-019-2361-1

    Article  MathSciNet  MATH  Google Scholar 

  23. Qin, L.F., Chen, Q.M., Cheng, H.B., Chen, Q., Li, J.F., Wang, Q.M.: Viscosity sensor using ZnO and AlN thin film bulk acoustic resonators with tilted polar c-axis orientations. J. Appl. Phys. 110, 094511 (2011). https://doi.org/10.1063/1.3657781

    Article  Google Scholar 

  24. Srinivas, S., Li, J., Zhou, Y.C., Soh, A.K.: The effective magnetoelectroelastic moduli of matrix-based multiferroic composites. J. Appl. Phys. 99, 043905 (2006). https://doi.org/10.1063/1.2173035

    Article  Google Scholar 

  25. Pan, E.: Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials. Z.. Angew. Math. Phys. 53, 815–838 (2002). https://doi.org/10.1007/s00033-002-8184-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China. Grant Numbers: 11472182 and 11872041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiashi Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Nie, G., Liu, X. et al. Magnetically induced redistribution of mobile charges in bending of composite beams with piezoelectric semiconductor and piezomagnetic layers. Arch Appl Mech 91, 2949–2956 (2021). https://doi.org/10.1007/s00419-021-01954-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01954-w

Keywords

Navigation