Skip to main content
Log in

Dynamic ultimate bearing capacity of beam-plate coupled structures with deformable connection under uniaxial compression, compression-bending and compression–shear loadings

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a generalized constrained differential quadrature method to investigate the elastoplastic dynamic response and ultimate bearing capacity of beam-plate coupled structures under uniaxial compression, compression-bending and compression–shear loadings, considering the interaction between plates and beams. A beam-plate coupled structure is divided into some plate elements, considering the compatibility between contiguous plate elements using the penalty function method which can solve the problem of beam-plate deformable connection of different materials. Virtual work principle and generalized constrained differential quadrature method are used to derive the dynamic governing equations of the beam-plate in which the geometrical and material nonlinearity is considered in the paper. The iterative Newmark/Newton–Raphson method is used to solve the governing equations of the beam-plate. The verification analysis is carried out to demonstrate the accuracy of the proposed method by comparison with the results from FEM. Then, various effects of the rotational spring stiffness, width-to-thickness ratio, aspect ratio, impact time and coupling load on the elastoplastic dynamic response and ultimate bearing capacity of beam-plates are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Paik, J.K., Thayamballi, A.K.: An experimental investigation on the dynamic ultimate compressive strength of ship plating. Int. J. Impact Eng. 28(7), 803–811 (2003)

    Article  Google Scholar 

  2. Han, H., Taheri, F., Pegg, N.: Quasi-static and dynamic crushing behaviors of aluminum and steel tubes with a cutout. Thin-Walled Struct. 45(3), 283–300 (2007)

    Article  Google Scholar 

  3. Saad-Eldeen, S., Garbatov, Y., Soares, C.G.: Experimental assessment of the ultimate strength of a box girder subjected to severe corrosion. Mar. Struct. 24(4), 338–357 (2011)

    Article  Google Scholar 

  4. Ghelli, D., Minak, G.: Low velocity impact and compression after impact tests on thin carbon/epoxy laminates. Compos. B Eng. 42(7), 2067–2079 (2011)

    Article  Google Scholar 

  5. Xu, W., Iijima, K., Wada, R., Fujikubo, M.: Experimental evaluation of the post-ultimate strength behavior of a ship’s hull girder in waves. J. Mar. Sci. Appl. 11(1), 34–43 (2012)

    Article  Google Scholar 

  6. Xu, M.C., Soares, C.G.: Comparisons of calculations with experiments on the ultimate strength of wide stiffened panels. Marine Struct. 31(apr.), 82–101 (2013)

    Article  Google Scholar 

  7. Xu, M.C., Soares, C.G.: Numerical assessment of experiments on the ultimate strength of stiffened panels. Eng. Struct. 45(DEC.), 460–471 (2012)

    Article  Google Scholar 

  8. Xu, M.C., Garbatov, Y., Soares, C.G.: Residual ultimate strength assessment of stiffened panels with locked cracks. Thin-Walled Struct. 85, 398–410 (2014)

    Article  Google Scholar 

  9. Zheng, C., Kong, X.S., Wu, W.G., Liu, F.: The elastic-plastic dynamic response of stiffened plates under confined blast load. Int. J. Impact Eng. 95(Sep.), 141–153 (2016)

    Article  Google Scholar 

  10. Wang, J., Guo, J., Yao, X.L., Zhang, A.M.: Dynamic buckling of stiffened plates subjected to explosion impact loads. Shock Waves 27(1), 37–52 (2017)

    Article  Google Scholar 

  11. Gruben, G., Solvernes, S., Berstad, T., Morin, D., Hopperstad, O.S., Langseth, M.: Low-velocity impact behaviour and failure of stiffened steel plates. Marine Struct. 54(jul.), 73–91 (2017)

    Article  Google Scholar 

  12. Chen, Y., Wan, J., He, K.: Experimental investigation on axial compressive strength of lateral impact damaged short steel columns repaired with CFRP sheets. Thin-Walled Struct. 131(OCT.), 531–546 (2018)

    Article  Google Scholar 

  13. Cheong, H.K., Hao, H., Cui, S.: Experimental investigation of dynamic post-buckling characteristics of rectangular plates under fluid-solid slamming. Eng. Struct. 22(8), 947–960 (2000)

    Article  Google Scholar 

  14. Cui, S., Hao, H., Cheong, H.K.: Numerical analysis of dynamic buckling of rectangular plates subjected to intermediate-velocity impact. Int. J. Impact Eng. 25(2), 147–167 (2001)

    Article  Google Scholar 

  15. Iannucci, L.: Progressive failure modelling of woven carbon composite under impact. Int. J. Impact Eng. 32(6), 1013–1043 (2006)

    Article  Google Scholar 

  16. Chen, N.Z., Soares, C.G.: Reliability assessment for ultimate longitudinal strength of ship hulls in composite materials. Probab. Eng. Mech. 22(4), 330–342 (2007)

    Article  Google Scholar 

  17. Luo, G.M., Lee, Y.J.: Simulation of constrained layered damped laminated plates subjected to low-velocity impact using a quasi-static method. Compos. Struct. 88(2), 290–295 (2009)

    Article  Google Scholar 

  18. Luo, G.M., Lee, Y.J.: Quasi-static simulation of constrained layered damped laminated curvature shells subjected to low-velocity impact. Compos. B Eng. 42(5), 1233–1243 (2011)

    Article  Google Scholar 

  19. Li, D.H., Liu, Y., Zhang, X.: Low-velocity impact responses of the stiffened composite laminated plates based on the progressive failure model and the layerwise/solid-elements method. Compos. Struct. 110(apr.), 249–275 (2014)

    Article  Google Scholar 

  20. Taherkhani, A., Alavi Nia, A.: Numerical investigation of cross-section on aluminum A6063 thin-walled structures under low-velocity impact loading. Adv. Mater. Res. 1019, 96–102 (2014)

    Article  Google Scholar 

  21. Yang, B., Soares, C.G., Wang, D.Y.: An empirical formulation for predicting the dynamic ultimate strength of rectangular plates under in-plane compressive loading. Int. J. Mech. Sci. 142, 213–222 (2018)

    Article  Google Scholar 

  22. Yang, B., Wang, D.Y.: Dynamic ultimate hull girder strength analysis on a container ship under impact bending moments. Int. J. Offshore Polar Eng. 28(1), 105–111 (2018)

    Article  Google Scholar 

  23. Soares, D.: Dynamic elastoplastic analyses by smoothed point interpolation methods. Int. J. Comput. Methods 10(05), 1350030 (2013)

    Article  MathSciNet  Google Scholar 

  24. So, H., Chen, J.T.: Experimental study of dynamic crushing of thin plates stiffened by stamping with V-grooves. Int. J. Impact Eng. 34(8), 1396–1412 (2007)

    Article  Google Scholar 

  25. Yin, C., Lu, A., Zeng, X.: An accurate and efficient computational method for seeking two equi-tangential stress hole shapes. Arch. Appl. Mech. 89(11), 2321–2334 (2019)

    Article  Google Scholar 

  26. Pasha, A.H.G., Sadeghi, A.: Experimental and theoretical investigations about the nonlinear vibrations of rectangular atomic force microscope cantilevers immersed in different liquids. Arch. Appl. Mech. 9, 1–25 (2020)

    Google Scholar 

  27. Yang, B., Wang, D.Y.: Dynamic buckling of stiffened plates with elastically restrained edges under in-plane impact loading. Thin-Walled Struct. 107(oct.), 427–442 (2016)

    Article  Google Scholar 

  28. Beerhorst, M., Seibel, M., Mittelstedt, C.: Efficient approximate solutions for postbuckling of axially compressed orthotropic plates with rotationally restrained and free longitudinal edges. Arch. Appl. Mech. 88(3), 461–476 (2018)

    Article  Google Scholar 

  29. Belytschko, T., Lin, J.I., Chen-Shyh, T.: Explicit algorithms for the nonlinear dynamics of shells. Comput. Methods Appl. Mech. Eng. 42(2), 225–251 (1984)

    Article  Google Scholar 

  30. Mondal, S., Ramachandra, L.S.: Nonlinear dynamic pulse buckling of imperfect laminated composite plate with delamination. Int. J. Solids Struct. 198, 170–182 (2020)

    Article  Google Scholar 

  31. Simons, J.W., Kirkpatrick, S.W.: High-speed passenger train crashworthiness and occupant survivability. Foreign Rolling Stock. 4(2), 121–132 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Liu, R. Dynamic ultimate bearing capacity of beam-plate coupled structures with deformable connection under uniaxial compression, compression-bending and compression–shear loadings. Arch Appl Mech 91, 3053–3073 (2021). https://doi.org/10.1007/s00419-021-01949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01949-7

Keywords

Navigation