Skip to main content
Log in

Solving procedure for the Kelvin–Kirchhoff equations in case of non-stationary rotations of slim disc

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

A Correction to this article was published on 13 March 2021

This article has been updated

Abstract

We have presented in this communication a new solving procedure for Kelvin–Kirchhoff equations, considering the dynamics of the falling or ascending the rigid disc in an ideal incompressible fluid, assuming additionally the dynamical symmetry of rotation for the falling or ascending body, I1 = I2. Fundamental law of angular momentum conservation has been used for the aforementioned solving procedure. The system of Euler equations for dynamics of disc’s rotation has been explored in regard to the existence of an analytic way of presentation for the approximated solution (where we consider the case of laminar flow at slow regime of deceleration of the symmetric disc’s rotation). This scenario is associated with consideration of that the Stokes boundary layer phenomenon on the boundaries of the body has also been assumed at formulation of basic Kelvin-Kirchhoff equations. It allows us to use the results of Jeffery’s fundamental work, in which analytical solution for rotations of spheroid’s particle in Euler angles was obtained. The results of calculations for the components of angular velocity {Ωi} should then be used for solving momentum equation of Kelvin–Kirchhoff system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Kirchhoff G.R.: Vorlesungen ueber Mathematische Physik, Mechanik. Lecture 19. Leipzig: Teubner (1877).

  2. Ershkov, S.V., Christianto, V., Shamin, R.V., Giniyatullin, A.R.: About analytical ansatz to the solving procedure for Kelvin-Kirchhoff equations. Eur. J. Mech. B/Fluids 79, 87–91 (2020)

    Article  MathSciNet  Google Scholar 

  3. Mathai, V., Zhu, X., Sun, C., Lohse, D.: Flutter to tumble transition of buoyant spheres triggered by rotational inertia changes. Nat. Commun. 9(1), 1–7 (2018)

    Article  Google Scholar 

  4. Pan, J.-H., Zhang, N.-M., Ni, M.-J.: Instability and transition of a vertical ascension or fall of a free sphere affected by a vertical magnetic field. J Fluid Mech. 859, 33–48 (2019)

    Article  MathSciNet  Google Scholar 

  5. Ern, P., Risso, F., Fabre, D., Magnaudet, J.: Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44, 97–121 (2012)

    Article  MathSciNet  Google Scholar 

  6. Kozelkov, A.S., Kurkin, A.A., Dmitriev, S.M., Tarasova, N.V., Efremov, V.R., Pelinovsky, E.N., Strelets, D.Y.: Study of specific features of free rise of solid spheres in a viscous fluid at moderate Reynolds numbers. Eur. J. Mech. B/Fluids 72, 616–623 (2018)

    Article  MathSciNet  Google Scholar 

  7. Novikov S.P., Shmel’tser I. Periodic solutions of Kirchhoff’s equations for the free motion of a rigid body in a fluid and the extended theory of Lyusternik-Shnirel’man-Morse (LSM). I. See at: http://www.mi-ras.ru/~snovikov/69.pdf

  8. Ershkov, S.V., Shamin, R.V.: The dynamics of asteroid rotation, governed by YORP effect: the kinematic ansatz. Acta Astronaut. 149, 47–54 (2018)

    Article  Google Scholar 

  9. Ershkov, S.V.: A Riccati-type solution of Euler-Poisson equations of rigid body rotation over the fixed point. Acta Mech. 228(7), 2719–2723 (2017)

    Article  MathSciNet  Google Scholar 

  10. Ershkov, S.V.: Non-stationary creeping flows for incompressible 3D Navier-Stokes equations. Eur. J. Mech. B/Fluids 61(1), 154–159 (2017)

    Article  MathSciNet  Google Scholar 

  11. Ershkov, S.V., Shamin, R.V.: On a new type of solving procedure for Laplace tidal equation. Phys. Fluids 30(12), 127107 (2018)

    Article  Google Scholar 

  12. Ershkov, S.V., Leshchenko, D.: On a new type of solving procedure for Euler-Poisson equations (rigid body rotation over the fixed point). Acta Mech. 230(3), 871–883 (2019). https://doi.org/10.1007/s00707-018-2328-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Kamke, E.: Hand-book for ordinary differential Equations. Moscow: Science (1971)

  14. Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. A 102(715), 161–179 (1922)

    MATH  Google Scholar 

  15. Cui, Z., Zhao, L., Huang, W.-X., Xu, C.-X.: Stability analysis of rotational dynamics of ellipsoids in simple shear flow. Phys. Fluids 31(2), 023301 (2019)

    Article  Google Scholar 

  16. Yarin, A.L., Gottlieb, O., Roisman, I.V.: Chaotic rotation of triaxial ellipsoids in simple shear flow. J. Fluid Mech. 340, 83–100 (1997)

    Article  MathSciNet  Google Scholar 

  17. Miloh, T., Landweber, L.: Generalization of the Kelvin-Kirchhoff equations for the motion of a body through a fluid. Phys. Fluids 24(1), 6–9 (1981)

    Article  MathSciNet  Google Scholar 

  18. Galper, A., Miloh, T.: Generalized kirchhoff equations for a deformable body moving in a weakly non-uniform flow field. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 446(1926), 169–193 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Dorfman, L.A.: Hydrodynamic resistance and outcome heat flows of a rotating bodies. Fizmatgiz, Moscow, 260 pages (in Russian) (1960).

  20. Gregory, N., Stuart, J.T., Walker, W.S.: On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk. Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Sci. 248(943), 155–199 (1955)

    MathSciNet  MATH  Google Scholar 

  21. Dolidze, D. E.: Non-stationary flow of viscous fluid, generated by the rotating disc. Prikl. Mat. Mech., Vol. XVIII, No 3 (in Russian) (1954)

  22. Ershkov, S.V., Leshchenko, D.: On the dynamics OF NON-RIGID asteroid rotation. Acta Astronaut. 161, 40–43 (2019)

    Article  Google Scholar 

  23. Bemelmans, J., Galdi, G.P., Kyed, M.: On the Steady Motion of a Coupled System Solid-Liquid. Am. Mathe. Soc Mem (2013). https://doi.org/10.1090/S0065-9266-2013-00678-8

    Article  MATH  Google Scholar 

  24. Cochran, W.G.: The flow due to rotating disc. Proc. Camb. Philos. Soc. 30(3), 365–375 (1934)

    Article  Google Scholar 

  25. Thiriot, K.H.: Über die laminare Anlaufströmung einer Flüssigkeit über einem rotierenden Boden bei plötzlicher Änderung des Drehungszustandes. Z. Angew. Math. Mech. 20, 1 (1940)

    Article  Google Scholar 

  26. Ershkov, S.V., Leshchenko, D., Giniyatullin, A.R.: Solving procedure for the Kelvin-Kirchhoff equations in case of buoyant (or the falling) ellipsoid of rotation. Europ. J. Mech. B/Fluids 81C, 23–27 (2020)

    Article  MathSciNet  Google Scholar 

  27. Ershkov, S.V., Leshchenko, D., Giniyatullin, A.R.: A new solving procedure for the Kelvin-Kirchhoff equations in case of a falling rotating torus. Int. J. Bifurc. Chaos 31(01), 2150010 (2021). https://doi.org/10.1142/S0218127421500103

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Sergey Ershkov is thankful to Dr. A.A.Kurkin with respect to review in scientific literature in his seminal article [6].

Author information

Authors and Affiliations

Authors

Contributions

In this research, Dr. SE is responsible for the general ansatz and the solving procedure, simple algebra manipulations, calculations, results of the article in Sections 1–5 and also is responsible for the search of approximate solutions. Dr. DL is responsible for theoretical investigations as well as for the deep survey in literature on the problem under consideration. Ayrat Giniyatullin is responsible for testing the initial conditions for the approximated solutions. All authors agreed with the results and conclusions of each other in Sections 1–7.

Corresponding author

Correspondence to Sergey V. Ershkov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershkov, S.V., Leshchenko, D. & Giniyatullin, A.R. Solving procedure for the Kelvin–Kirchhoff equations in case of non-stationary rotations of slim disc. Arch Appl Mech 91, 2921–2929 (2021). https://doi.org/10.1007/s00419-021-01890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01890-9

Keywords

Navigation