Skip to main content
Log in

Assessment on dynamic characterization of the cylindrical laminated composite shallow shell panel through experimental and numerical approach

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the present study, the dynamic characterization of the glass fiber-reinforced polymer (GFRP)-laminated composite cylindrical open shallow shell panels is explored with the experimental and numerical approach. In the finite element modeling (FEM), the governing equilibrium equation of the cylindrical shell panel is developed with higher-order shear deformation theory by considering the nine-noded rectangular elements. The convergence and validation study of the present FEM is accomplished with the available literature. The cylindrical laminated composite shallow shell panels are fabricated with a curvature radius of 0.8 m, and the experimentation on the free vibration investigation is performed with various boundary conditions; then, the experimental outcomes are compared with the present FEM to verify the effectiveness. The detailed parametric investigation is executed to explore the impact of curvature radius (R), boundary conditions, thickness ratio, aspect ratio (L/B), and stacking sequence on the structural response of the cylindrical laminated composite shallow shell panel. Transverse vibration response of the GFRP cylindrical laminated composite shallow shell panel is also performed with the various curvature ratios at clamped at all end conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reddy, J.N.: Exact solutions of moderately thick laminated shells. J. Eng. Mech. ASCE 110(5), 794–809 (1984)

    Article  Google Scholar 

  2. Lim, C.W., Liew, K.M.: A higher order theory for vibration of shear deformable cylindrical shallow shells. Int. J. Mech. Sci. 37(3), 277–295 (1995)

    Article  MATH  Google Scholar 

  3. Qatu, M.S., Leissa, A.W.: Natural frequencies for cantilevered doubly-curved laminated composite shallow shells. Compos. Struct. 7(3), 227–255 (1991)

    Article  Google Scholar 

  4. Qatu, M.S., Asadi, E.: Vibration of doubly curved shallow shells with arbitrary boundaries. Appl. Acoust. 73(1), 21–27 (2012)

    Article  Google Scholar 

  5. Qatu, M.S.: Vibration studies on completely free shallow shells having triangular and trapezoidal planforms. Appl. Acoust. 44(3), 215–231 (1995)

    Article  Google Scholar 

  6. Bardell, N.S., Dunsdon, J.M., Langley, R.S.: On the free vibration of completely free, open, cylindrically curved isotropic shell panels. J. Sound Vib. 207(5), 647–669 (1997)

    Article  Google Scholar 

  7. Messina, A., Soldatos, K.P.: Vibration of completely free composite plates and cylindrical shell panels by a higher-order theory. Int. J. Mech. Sci. 41(8), 891–918 (1999)

    Article  MATH  Google Scholar 

  8. Zhao, X., Ng, T.Y., Liew, K.M.: Free vibration of two-side simply-supported laminated cylindrical panels via the mesh-free kp-Ritz method. Int. J. Mech. Sci. 46(1), 123–142 (2004)

    Article  MATH  Google Scholar 

  9. Shakeri, M., Alibeigloo, A.: Dynamic analysis of orthotropic laminated cylindrical panels. Mech. Adv. Mater. Struct. 12(1), 67–75 (2005)

    Article  Google Scholar 

  10. Bespalova, E.I.: Solving stationary problems for shallow shells by a generalized Kantorovich–Vlasov method. Int. Appl. Mech. 44(11), 1283–1293 (2008)

    Article  MathSciNet  Google Scholar 

  11. Albuquerque, E.L., Aliabadi, M.H.: (2010) A boundary element analysis of symmetric laminated composite shallow shells. Comput. Method Appl. Mech. 199(41–44), 2663–2668 (2010)

    Article  MATH  Google Scholar 

  12. Liu, B., Xing, Y.F., Qatu, M.S., et al.: Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells. Compos. Struct. 94(2), 484–493 (2012)

    Article  Google Scholar 

  13. Asadi, E., Qatu, M.S.: Static analysis of thick laminated shells with different boundary conditions using GDQ. Thin Wall Struct. 51, 76–81 (2012)

    Article  Google Scholar 

  14. Qu, Y., Hua, H., Meng, G.: A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries. Compos. Struct. 95, 307–321 (2013)

    Article  Google Scholar 

  15. Yiotis, A.J., Katsikadelis, J.T.: Analysis of cylindrical shell panels. A meshless solution. Eng. Anal. Bound. Elem. 37(6), 928–935 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin, G., Ye, T., Ma, X., et al.: A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions. Int. J. Mech. Sci. 75, 357–376 (2013)

    Article  Google Scholar 

  17. Jin, G., Ye, T., Chen, Y., et al.: An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions. Compos. Struct. 106, 114–127 (2013)

    Article  Google Scholar 

  18. Useche, J.: Vibration analysis of shear deformable shallow shells using the boundary element method. Eng. Struct. 62, 65–74 (2014)

    Article  MATH  Google Scholar 

  19. Tornabene, F., Brischetto, S., Fantuzzi, N., et al.: Viola, numerical and exact models for free vibration analysis of cylindrical and spherical shell panels. Compos. Part B Eng. 81, 231–250 (2015)

    Article  Google Scholar 

  20. Tang, D., Sun, L., Yao, X., et al.: Free vibration analysis of open circular cylindrical shells by the method of reverberation-ray matrix. Adv. Mech. Eng. 8(3), 1687814016638979 (2016)

    Article  Google Scholar 

  21. Wang, Q., Shao, D., Qin, B.: A simple first-order shear deformation shell theory for vibration analysis of composite laminated open cylindrical shells with general boundary conditions. Compos. Struct. 184, 211–232 (2018)

    Article  Google Scholar 

  22. Okhovat, R., Bostrom, A.: Dynamic equations for an orthotropic cylindrical shell. Compos. Struct. 184, 1197–1203 (2018)

    Article  Google Scholar 

  23. Kumari, P., Kar, S.: Static behavior of arbitrarily supported composite laminated cylindrical shell panels: an analytical 3D elasticity approach. Compos. Struct. 207, 949–965 (2019)

    Article  Google Scholar 

  24. Tong, B., Li, Y., Zhu, X., et al.: Three-dimensional vibration analysis of arbitrary angle-ply laminated cylindrical shells using differential quadrature method. Appl. Acoust. 146, 390–397 (2019)

    Article  Google Scholar 

  25. Li, R., Zheng, X., Yang, Y., et al.: Hamiltonian system-based new analytic free vibration solutions of cylindrical shell panels. Appl. Math. Model. 76, 900–917 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sheikholeslami, M., Farshad, S.A., Shafee, A., et al.: Numerical modeling for nanomaterial behavior in a solar unit analyzing entropy generation. J. Taiwan Inst. Chem. E 112, 271–285 (2020)

    Article  Google Scholar 

  27. Sheikholeslami, M., Jafaryar, M., Shafee, A., et al.: Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J. Clean Prod. 2020, 121206 (2020)

    Article  Google Scholar 

  28. Sheikholeslami, M., Jafaryar, A.E., et al.: Energy and entropy evaluation and two-phase simulation of nanoparticles within a solar unit with impose of new turbulator. Sustain. Energy Technol. Assess. 39, 100727 (2020)

    Google Scholar 

  29. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edn. CRC Press, London (2003)

    Book  Google Scholar 

  30. Reddy, J.N., Liu, C.F.: A higher-order shear deformation theory of laminated elastic shells. Int. J. Eng. Sci. 23(3), 319–330 (1985)

    Article  MATH  Google Scholar 

  31. Garg, A.K., Khare, R.K., Kant, T.: Higher-order closed-form solutions for free vibration of laminated composite and sandwich shells. J. Sandw. Struct. Mater. 8(3), 205–235 (2006)

    Article  Google Scholar 

  32. Berthelot, J.M.: Composite Materials—Mechanical Behavior and Structural Analysis. Springer, New York (1999)

    MATH  Google Scholar 

  33. Jeyaraj, P., Ganesan, N., Padmanabhan, C.: Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment. J. Sound Vib. 320(1–2), 322–338 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoharan Ramamoorthy.

Ethics declarations

Conflict of interest

On behalf of all authors, Manoharan Ramamoorthy declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In the present FEM, a nine-noded rectangular element is considered and the respective shape function is given as

$$\begin{aligned} N_{1} & = \frac{1}{4}\left( {1 - \xi } \right)\left( {1 - \eta } \right)\eta \xi ;\quad N_{2} = \frac{1}{4}\left( {1 + \xi } \right)\left( {1 - \eta } \right)\eta \xi ;\quad N_{3} = \frac{1}{4}\left( {1 + \xi } \right)\left( {1 + \eta } \right)\eta \xi ; \\ N_{4} & = - \frac{1}{4}\left( {1 - \xi } \right)\left( {1 + \eta } \right)\eta \xi ;\quad N_{5} = - \frac{1}{2}\left( {1 - \xi^{2} } \right)\left( {1 - \eta } \right)\eta ;\quad N_{6} = \frac{1}{2}\left( {1 + \xi } \right)\left( {1 - \eta^{2} } \right)\xi ; \\ N_{7} & = \frac{1}{2}\left( {1 - \xi^{2} } \right)\left( {1 + \eta } \right)\eta ;\quad N_{8} = - \frac{1}{2}\left( {1 - \xi } \right)\left( {1 - \eta^{2} } \right)\xi ;\quad N_{9} = \left( {1 - \xi^{2} } \right)\left( {1 - \eta^{2} } \right). \\ \end{aligned}$$
(A1)

Axial distortion strain–displacement field matrix \(B_{{{{\mathrm{cs}}} }}^{1} (x,y)\) of the cylindrical shell panel

$$B_{{{{\mathrm{cs}}} }}^{1} (x,y) = \left[ {\begin{array}{*{20}c} {\frac{{\partial N_{i}^{ss} }}{\partial x}} & 0 & {N_{i}^{ss} \times ( - S_{22} )} & 0 & 0 & 0 & 0 \\ 0 & {\frac{{\partial N_{i}^{ss} }}{\partial y}} & 0 & 0 & 0 & 0 & 0 \\ {\frac{{\partial N_{i}^{ss} }}{\partial y}} & {\frac{{\partial N_{i}^{ss} }}{\partial x}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {\frac{{\partial N_{i}^{ss} }}{\partial x}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{{\partial N_{i}^{ss} }}{\partial y}} & 0 & 0 \\ 0 & 0 & 0 & {\frac{{\partial N_{i}^{ss} }}{\partial y}} & {\frac{{\partial N_{i}^{ss} }}{\partial x}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {\frac{{\partial N_{i}^{ss} }}{\partial x} \times S_{11} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{\partial N_{i}^{ss} }}{\partial y} \times S_{11} } \\ 0 & 0 & 0 & 0 & 0 & {\frac{{\partial N_{i}^{ss} }}{\partial y} \times S_{11} } & {\frac{{\partial N_{i}^{ss} }}{\partial x} \times S_{11} } \\ \end{array} } \right].$$
(A2)

Strain–displacement matrix \(B_{{{{\mathrm{cs}}} }}^{2} (x,y)\) of the cylindrical shell panel in concerning with the transverse deformation.

$$B_{{{{\mathrm{cs}}} }}^{2} (x,y) = \left[ {\begin{array}{*{20}c} {N_{i}^{ss} \times S_{22} } & 0 & {\frac{{\partial N_{i}^{ss} }}{\partial x}} & {N_{i} } & 0 & 0 & 0 \\ 0 & 0 & {\frac{{\partial N_{i}^{ss} }}{\partial y}} & 0 & {N_{i} } & 0 & 0 \\ 0 & 0 & 0 & {N_{i}^{ss} \times S_{22} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {N_{i}^{ss} \times S_{33} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {N_{i}^{ss} \times S_{33} } \\ 0 & 0 & 0 & 0 & 0 & {N_{i}^{ss} \times S_{44} } & 0 \\ \end{array} } \right]\quad i = 1,2,3, \ldots ,9.$$
(A3)

For the orthotropic cylindrical laminated composite shell panel, the inertia matrix is given as

$$I_{SS} = \left[ {\begin{array}{*{20}c} {I_{SS}^{0} } & 0 & 0 & {I_{SS}^{1} } & 0 & {I_{SS}^{3} } & 0 \\ 0 & {I_{SS}^{0} } & 0 & 0 & {I_{SS}^{1} } & 0 & {I_{SS}^{3} } \\ 0 & 0 & {I_{SS}^{0} } & 0 & 0 & 0 & 0 \\ {I_{SS}^{1} } & 0 & 0 & {I_{SS}^{2} } & 0 & { - S_{8} \times I_{SS}^{4} } & 0 \\ 0 & {I_{SS}^{1} } & 0 & 0 & {I_{SS}^{2} } & 0 & { - S_{8} \times I_{SS}^{4} } \\ { - S_{8} \times I_{SS}^{3} } & 0 & 0 & { - S_{8} \times I_{SS}^{4} } & 0 & { - \left( {S_{8} } \right)^{2} \times I_{SS}^{6} } & 0 \\ 0 & { - S_{8} \times I_{SS}^{3} } & 0 & 0 & { - S_{8} \times I_{SS}^{4} } & 0 & { - \left( {S_{8} } \right)^{2} \times I_{SS}^{6} } \\ \end{array} } \right].$$
(A4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramani, M., Ramamoorthy, M. Assessment on dynamic characterization of the cylindrical laminated composite shallow shell panel through experimental and numerical approach. Arch Appl Mech 91, 1925–1943 (2021). https://doi.org/10.1007/s00419-020-01862-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01862-5

Keywords

Navigation